Special Issue on Applications of Semiconductor Optical Amplifiers
1. Introduction
2. Special Issue Papers
3. Submission and Review Process
4. Future Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Ueno, Y.; Nakamura, S.; Tajima, K. Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing. J. Opt. Soc. Am. B 2002, 19, 2573–2589. [Google Scholar] [CrossRef]
- Morito, K.; Ekawa, M.; Watanabe, T.; Kotaki, Y. High-output-power polarization-insensitive semiconductor optical amplifier. J. Lightwave Technol. 2003, 21, 176–181. [Google Scholar] [CrossRef]
- Zimmerman, D.R.; Spiekman, L.H. Amplifiers for the masses: EDFA, EDWA, and SOA amplest for metro and access applications. J. Lightwave Technol. 2004, 22, 63. [Google Scholar] [CrossRef]
- Dong, H.; Zhu, G.; Wang, Q.; Sun, H.; Dutta, N.K.; Jaques, J.; Piccirilli, A.B. Multiwavelength fiber ring laser source based on a delayed interferometer. IEEE Photonics Technol. Lett. 2005, 17, 303–305. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Q.; Dong, H.; Dutta, N.K. All-optical logic performance of quantum-dot semiconductor amplifier-based devices. Microwave Opt. Technol. Lett. 2006, 48, 29–35. [Google Scholar] [CrossRef]
- Matsuura, M.; Kishi, N.; Miki, T. Broadband regenerative wavelength conversion and multicasting using triple-stage SOA-based wavelength converter. Opt. Lett. 2007, 32, 1026–1028. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, M.; Iwatsu, N.; Kitamura, K.; Kishi, N. Time-resolved chirp properties of SOAs measured with an optical bandpass filter. IEEE Photonics Technol. Lett. 2008, 20, 2001–2003. [Google Scholar] [CrossRef]
- Ma, S.; Sun, H.; Chen, Z.; Dutta, N.K. High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers. Opt. Express 2009, 17, 18469–18477. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.N.; Matsuura, M.; Kishi, N. Enhancement of input power dynamic range for multiwavelength amplification and optical signal processing in a semiconductor optical amplifier using holding beam effect. J. Lightwave Technol. 2010, 28, 2593–2602. [Google Scholar] [CrossRef]
- Kravtsov, K.; Fok, M.P.; Rosenbluth, D.; Prucnal, P.R. Ultrafast all-optical implementation of a leaky integrate-and-fire neuron. Opt. Expr. 2011, 19, 2133–2147. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ma, S.; Hu, H.; Dutta, N.K. All optical latches using quantum-dot semiconductor optical amplifier. Opt. Commun. 2012, 285, 5138–5143. [Google Scholar] [CrossRef]
- Spiekman, L.H. Active devices in passive optical networks. J. Lightwave Technol. 2013, 31, 488–497. [Google Scholar] [CrossRef]
- Uenohara, H.; Aikawa, Y. A bit rate adaptable operation of a hybrid integrated wavelength converter using a semiconductor optical amplifier type Mach-Zehnder Interferometer. Opt. Lett. 2014, 38, 4982–4984. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.P.; Wang, N.; Wu, B.; Prucnal, P.R. Simultaneous variable optical weight and delay in a semiconductor optical amplifier for microwave photonics. J. Lightwave Technol. 2015, 33, 2120–2126. [Google Scholar] [CrossRef]
- Perin, J.K.; Sharif, M.; Kahn, J.M. Sensitivity improvement in 100 Gbit/s-per-wavelength links using semiconductor optical amplifiers or avalanche photodiodes. J. Lightwave Technol. 2016, 33, 5542–5553. [Google Scholar] [CrossRef]
- Volet, N.; Spott, A.; Stanton, E.J.; Davenport, M.L.; Chang, L.; Peters, J.; Briles, T.C.; Papp, S.B.; Diddams, S.A.; Meyer, J.; et al. Semiconductor optical amplifiers at 2.0-µm wavelength on silicon. Laser Photonics. Rev. 2017, 11, 1600165. [Google Scholar] [CrossRef]
- Pleros, N.; Zakynthinos, P.; Poustie, A.; Tsiokos, D.; Bakopoulos, P.; Petrantonakis, D.; Kanellos, G.T.; Maxwell, G.; Avramopoulos, H. Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching. IET Optoelectron. 2007, 1, 120–126. [Google Scholar] [CrossRef]
- Rizou, Z.V.; Zoiros, K.E. SOA dynamics and pattern effects. In Handbook of Optoelectronic Device Modeling and Simulation: Fundamentals, Materials, Nanostructures, LEDs, and Amplifiers; CRC Press: Boca Ratón, FL, USA, 2017; Volume 1. [Google Scholar]
- Zoiros, K.E. Semiconductor optical amplifier-based interferometric switches: Overview and characteristic applications of two main types. In Handbook of Interferometers: Research, Technology and Applications; Nova Publishers: Hauppauge, NY, USA, 2009; pp. 95–135. [Google Scholar]
- Vagionas, C.; Maniotis, P.; Pitris, S.; Miliou, A.; Pleros, N. Integrated optical content addressable memories (CAM) and optical random access memories (RAM) for ultra-fast address look-up operations. Appl. Sci. 2017, 7, 700. [Google Scholar] [CrossRef]
- Rizou, Z.V.; Zoiros, K.E.; Hatziefremidis, A. Comparison of basic notch filters for semiconductor optical amplifier pattern effect mitigation. Appl. Sci. 2017, 7, 783. [Google Scholar] [CrossRef]
- Ó Dúill, S.P.; Landais, P.; Barry, L.P. Estimation of the performance improvement of pre-Amplified PAM4 systems when using multi-section semiconductor optical amplifiers. Appl. Sci. 2017, 7, 908. [Google Scholar] [CrossRef]
- Gebrewold, S.A.; Bonjour, R.; Brenot, R.; Hillerkuss, D.; Leuthold, J. Bit- and power-loading—A comparative study on maximizing the capacity of RSOA based colorless DMT transmitters. Appl. Sci. 2017, 7, 999. [Google Scholar] [CrossRef]
- Rizou, Z.V.; Zoiros, K.E. Theoretical analysis of directly modulated reflective semiconductor optical amplifier performance enhancement by microring resonator-based notch filtering. Appl. Sci. 2018, 8, 223. [Google Scholar] [CrossRef]
- Calabretta, N.; Miao, W.; Mekonnen, K.; Prifti, K. SOA based photonic integrated WDM cross-connects for optical metro-access networks. Appl. Sci. 2017, 7, 865. [Google Scholar] [CrossRef]
- Stabile, R. Towards large-scale fast reprogrammable SOA-based photonic integrated switch circuits. Appl. Sci. 2017, 7, 920. [Google Scholar] [CrossRef]
- Lin, Y.; Anthur, A.P.; Ó Dúill, S.P.; Liu, F.; Yu, Y.; Barry, L.P. Fast reconfigurable SOA-based wavelength conversion of advanced modulation format data. Appl. Sci. 2017, 7, 1033. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Glesk, I. Application of semiconductor optical amplifier (SOA) in managing chirp of optical code division multiple access (OCDMA) code carriers in temperature affected fibre link. Appl. Sci. 2018, 8, 715. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoiros, K.E. Special Issue on Applications of Semiconductor Optical Amplifiers. Appl. Sci. 2018, 8, 1185. https://doi.org/10.3390/app8071185
Zoiros KE. Special Issue on Applications of Semiconductor Optical Amplifiers. Applied Sciences. 2018; 8(7):1185. https://doi.org/10.3390/app8071185
Chicago/Turabian StyleZoiros, Kyriakos E. 2018. "Special Issue on Applications of Semiconductor Optical Amplifiers" Applied Sciences 8, no. 7: 1185. https://doi.org/10.3390/app8071185