Nutritional Composition and Biological Properties of Sixteen Edible Mushroom Species
Abstract
:1. Introduction
2. Materials and Methods
3. Chemical Characterization
4. Sixteen Edible Mushrooms of Greece
4.1. Agaricus bisporus
4.2. Agaricus blazei
4.3. Amanita caesarea
4.4. Boletus edulis
4.5. Cantharellus cibarius
4.6. Coprinus comatus
4.7. Cordyceps militaris
4.8. Craterellus cornucopioides
4.9. Craterellus lutescens
4.10. Ganoderma lucidum
4.11. Grifola frondosa
4.12. Hericium erinaceus
4.13. Lentinula edodes
4.14. Marasmius oreades
4.15. Morchella elata
4.16. Pleurotus citrinopileatus
5. Nutritional Value
6. Discussion
7. Educational Interventions and Mushroom Museum of Meteora
8. Conclusions
9. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chong, P.S.; Fung, M.L.; Wong, K.H.; Lim, L.W. Therapeutic Potential of Hericium erinaceus for Depressive Disorder. Int. J. Mol. Sci. 2019, 21, 163. [Google Scholar] [CrossRef] [PubMed]
- Atila, F.; Nadhim Owaid, M.; Ali Shariati, M. The Nutritional and Medical Benefits of Agaricus Bisporus: A Review. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 281–286. [Google Scholar] [CrossRef]
- Grimm, D.; Wosten, H.A.B. Mushroom cultivation in the circular economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.; Burgos, N.; Barnard, A.; Evans, G.; Preece, J.; Graz, M.; Ruthes, A.C.; Jimenez-Quero, A.; Martinez-Abad, A.; Vilaplana, F.; et al. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem. 2019, 292, 176–187. [Google Scholar] [CrossRef]
- Royse, D.J.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World. In Edible and Medicinal Mushrooms; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 5–13. [Google Scholar]
- Valverde, M.E.; Hernandez-Perez, T.; Paredes-Lopez, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Chun, S.; Gopal, J.; Muthu, M. Antioxidant Activity of Mushroom Extracts/Polysaccharides-Their Antiviral Properties and Plausible AntiCOVID-19 Properties. Antioxidants 2021, 10, 1899. [Google Scholar] [CrossRef] [PubMed]
- Stilinovic, N.; Capo, I.; Vukmirovic, S.; Raskovic, A.; Tomas, A.; Popovic, M.; Sabo, A. Chemical composition, nutritional profile and in vivo antioxidant properties of the cultivated mushroom Coprinus comatus. Royal Soc. Open Sci. 2020, 7, 200900. [Google Scholar] [CrossRef]
- Wong, J.H.; Ng, T.B.; Chan, H.H.L.; Liu, Q.; Man, G.C.W.; Zhang, C.Z.; Guan, S.; Ng, C.C.W.; Fang, E.F.; Wang, H.; et al. Mushroom extracts and compounds with suppressive action on breast cancer: Evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl. Microbiol. Biotechnol. 2020, 104, 4675–4703. [Google Scholar] [CrossRef]
- Hetland, G.; Johnson, E.; Bernardshaw, S.V.; Grinde, B. Can medicinal mushrooms have prophylactic or therapeutic effect against COVID-19 and its pneumonic superinfection and complicating inflammation? Scand. J. Immunol. 2021, 93, e12937. [Google Scholar] [CrossRef]
- Wasser, S.P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol. 2011, 89, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Gargano, M.L.; van Griensven, L.J.L.D.; Isikhuemhen, O.S.; Lindequist, U.; Venturella, G.; Wasser, S.P.; Zervakis, G.I. Medicinal mushrooms: Valuable biological resources of high exploitation potential. Plant Biosyst.—An Int. J. Deal. All Asp. Plant Biol. 2017, 151, 548–565. [Google Scholar] [CrossRef]
- Nikolaou, I.E.; Stefanakis, A.I. A review of circular economy literature through a threefold level framework and engineering-management approach. Circ. Econ. Sustain. 2022, 1, 1–19. [Google Scholar]
- Horwitz, W.; Chichilo, P.; Reynolds, H. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Washington, DC, USA, 1970. [Google Scholar]
- Zsigmond, A.R.; Varga, K.; Kántor, I.; Urák, I.; May, Z.; Héberger, K. Elemental composition of wild growing Agaricus campestris mushroom in urban and peri-urban regions of Transylvania (Romania). J. Food Compos. Anal. 2018, 72, 15–21. [Google Scholar] [CrossRef]
- Ozturk, M.; Duru, M.E.; Kivrak, S.; Mercan-Dogan, N.; Turkoglu, A.; Ozler, M.A. In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms. Food Chem. Toxicol. 2011, 49, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Gąsecka, M.; Magdziak, Z.; Siwulski, M.; Mleczek, M. Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus. Eur. Food Res. Technol. 2017, 244, 259–268. [Google Scholar] [CrossRef]
- Muszyńska, B.; Kała, K.; Rojowski, J.; Grzywacz, A.; Opoka, W. Composition and Biological Properties of Agaricus bisporus Fruiting Bodies—A Review. Pol. J. Food Nutr. Sci. 2017, 67, 173–181. [Google Scholar] [CrossRef]
- Owaid, M. Mineral elements content in two sources of Agaricus bisporus in Iraqi market. J. Adv. Appl. Sci. 2015, 3, 46–50. [Google Scholar]
- Tian, Y.; Zeng, H.; Xu, Z.; Zheng, B.; Lin, Y.; Gan, C.; Lo, Y.M. Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus). Carbohydr. Polym. 2012, 88, 522–529. [Google Scholar] [CrossRef]
- Yamac, M.; Kanbak, G.; Zeytinoglu, M.; Senturk, H.; Bayramoglu, G.; Dokumacioglu, A.; Van Griensven, L.J.L.D. Pancreas Protective Effect of Button Mushroom Agaricus bisporus (J.E. Lange) Imbach (Agaricomycetidae) Extract on Rats with Streptozotocin-Induced Dia betes. Int. J. Med. Mushrooms 2010, 12, 379–389. [Google Scholar] [CrossRef]
- Carneiro, A.A.; Ferreira, I.C.; Duenas, M.; Barros, L.; da Silva, R.; Gomes, E.; Santos-Buelga, C. Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes. Food Chem. 2013, 138, 2168–2173. [Google Scholar] [CrossRef]
- Wang, H.; Fu, Z.; Han, C. The Medicinal Values of Culinary-Medicinal Royal Sun Mushroom (Agaricus blazei Murrill). Evid.-Based Complementary Altern. Med. eCAM 2013, 2013, 842619. [Google Scholar] [CrossRef] [PubMed]
- Faccin, L.C.; Benati, F.; Rincao, V.P.; Mantovani, M.S.; Soares, S.A.; Gonzaga, M.L.; Nozawa, C.; Carvalho Linhares, R.E. Antiviral activity of aqueous and ethanol extracts and of an isolated polysaccharide from Agaricus brasiliensis against poliovirus type 1. Lett. Appl. Microbiol. 2007, 45, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Niwa, A.; Tajiri, T.; Higashino, H. Ipomoea batatas and Agarics blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin-induced diabetic rats. J. Clin. Biochem. Nutr. 2011, 48, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.G.; Fan, M.J.; Tang, N.Y.; Yang, J.S.; Hsia, T.C.; Lin, J.J.; Lai, K.C.; Wu, R.S.; Ma, C.Y.; Wood, W.G.; et al. An extract of Agaricus blazei Murill administered orally promotes immune responses in murine leukemia BALB/c mice in vivo. Integr. Cancer Ther. 2012, 11, 29–36. [Google Scholar] [CrossRef]
- Endo, M.; Beppu, H.; Akiyama, H.; Wakamatsu, K.; Ito, S.; Kawamoto, Y.; Shimpo, K.; Sumiya, T.; Koike, T.; Matsui, T. Agaritine purified from Agaricus blazei Murrill exerts anti-tumor activity against leukemic cells. Biochim. Biophys. Acta 2010, 1800, 669–673. [Google Scholar] [CrossRef]
- Oyedepo, T.A.; Morakinyo, A.E. Medicinal Mushrooms. In Herbal Product Development Formulation and Applications; CRC Press: Boca Raton, FL, USA, 2020; pp. 167–203. [Google Scholar]
- Cano, J.M.; Berrocal-Lobo, M.; Dominguez-Nunez, J.A. Growth of Amanita caesarea in the presence of Pseudomonas fluorescens and Bacillus cereus. Fungal Biol. 2017, 121, 825–833. [Google Scholar] [CrossRef]
- Dogan, H.H.; Akbas, G. Biological activity and fatty acid composition of Caesar’s mushroom. Pharm. Biol. 2013, 51, 863–871. [Google Scholar] [CrossRef]
- Ouzouni, P.K.; Petridis, D.; Koller, W.-D.; Riganakos, K.A. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem. 2009, 115, 1575–1580. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Zhang, Y.; Liu, X.; Wang, C.; Teng, L.; Wang, D. Protective roles of Amanita caesarea polysaccharides against Alzheimer’s disease via Nrf2 pathway. Int. J. Biol. Macromol. 2019, 121, 29–37. [Google Scholar] [CrossRef]
- Evans, D.A.; Beckett, L.A.; Field, T.S.; Feng, L.; Albert, M.S.; Bennett, D.A.; Tycko, B.; Mayeux, R. Apolipoprotein E ϵ4 and Incidence of Alzheimer Disease in a Community Population of Older Persons. JAMA 1997, 277, 822–824. [Google Scholar] [CrossRef]
- Hu, W.; Li, Z.; Wang, W.; Song, M.; Dong, R.; Zhou, Y.; Li, Y.; Wang, D. Structural characterization of polysaccharide purified from Amanita caesarea and its pharmacological basis for application in Alzheimer’s disease: Endoplasmic reticulum stress. Food Funct. 2021, 12, 11009–11023. [Google Scholar] [CrossRef] [PubMed]
- Falandysz, J. Nutritional and Other Trace Elements and Their Associations in Raw King Bolete Mushrooms, Boletus edulis. Int. J. Environ. Res. Public Health 2021, 19, 417. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, G.; Pogon, K.; Skrzypczak, A.; Bernas, E. Composition and antioxidant properties of wild mushrooms Boletus edulis and Xerocomus badius prepared for consumption. J. Food Sci. Technol. 2015, 52, 7944–7953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, R.; Liu, F.; Ng, T.B. Purification and characterization of a novel protein with activity against non-small-cell lung cancer in vitro and in vivo from the edible mushroom Boletus edulis. Int. J. Biol. Macromol. 2021, 174, 77–88. [Google Scholar] [CrossRef]
- Meng, T.; Yu, S.S.; Ji, H.Y.; Xu, X.M.; Liu, A.J. A novel acid polysaccharide from Boletus edulis: Extraction, characteristics and antitumor activities in vitro. Glycoconj. J. 2021, 38, 13–24. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Dietary Reference Values for Nutrients Summary Report; EFSA: Parma, Italy, 2017. [Google Scholar]
- Muszynska, B.; Kała, K.; Firlej, A.; Ziaja, K. Cantharellus cibarius—Culinary-medicinal mushroom content and biological activity. Acta Pol. Pharm.—Drug Res. 2016, 73, 589–598. [Google Scholar]
- Kumari, D.; Reddy, M.S.; Upadhyay, R.C. Nutritional composition and antioxidant activities of 18 different wild Cantharellus mushrooms of northwestern Himalayas. Food Sci. Technol. Int. = Cienc. Tecnol. Aliment. Int. 2011, 17, 557–567. [Google Scholar] [CrossRef]
- Muszynska, B.; Ziaja, K.; Ekiert, H. Phenolic acids in selected edible basidiomycota species: Armillaria mellea, Boletus badius, Boletus edulis, Cantharellus cibarius, Lactarius deliciosus and Pleurotus ostreatus. Acta Sci. Pol. Hortorum Cultus 2013, 12, 107–116. [Google Scholar]
- Lemieszek, M.K.; Nunes, F.M.; Marques, G.; Rzeski, W. Cantharellus cibarius branched mannans inhibits colon cancer cells growth by interfering with signals transduction in NF-kB pathway. Int. J. Biol. Macromol. 2019, 134, 770–780. [Google Scholar] [CrossRef]
- Nowakowski, P.; Naliwajko, S.K.; Markiewicz-Zukowska, R.; Borawska, M.H.; Socha, K. The two faces of Coprinus comatus-Functional properties and potential hazards. Phytother. Res. PTR 2020, 34, 2932–2944. [Google Scholar] [CrossRef]
- Rouhana-Toubi, A.; Wasser, S.P.; Agbarya, A.; Fares, F. Inhibitory effect of ethyl acetate extract of the shaggy inc cap medicinal mushroom, Coprinus comatus (Higher Basidiomycetes) fruit bodies on cell growth of human ovarian cancer. Int. J. Med. Mushrooms 2013, 15, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Tel, G.; Cavdar, H.; Deveci, E.; Ozturk, M.; Duru, M.E.; Turkoglu, A. Minerals and metals in mushroom species in Anatolia. Food Addit. Contam. Part B Surveill. 2014, 7, 226–231. [Google Scholar] [CrossRef]
- Ding, Z.; Lu, Y.; Lu, Z.; Lv, F.; Wang, Y.; Bie, X.; Wang, F.; Zhang, K. Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem. 2010, 121, 39–43. [Google Scholar] [CrossRef]
- Yu, J.; Cui, P.-J.; Zeng, W.-L.; Xie, X.-L.; Liang, W.-J.; Lin, G.-B.; Zeng, L. Protective effect of selenium-polysaccharides from the mycelia of Coprinus comatus on alloxan-induced oxidative stress in mice. Food Chem. 2009, 117, 42–47. [Google Scholar] [CrossRef]
- Zhou, G.; Han, C. The co-effect of vanadium and fermented mushroom of Coprinus comatus on glycaemic metabolism. Biol. Trace Elem. Res. 2008, 124, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Ma, S.; Guo, H.; Cui, X.; Wang, S.; Zhong, X.; Wu, Y.; Zheng, W.; Wang, H.; Yu, J.; et al. Comparative study on the monosaccharide compositions, antioxidant and hypoglycemic activities in vitro of intracellular and extracellular polysaccharides of liquid fermented Coprinus comatus. Int. J. Biol. Macromol. 2019, 139, 543–549. [Google Scholar] [CrossRef]
- Ren, J.; Shi, J.L.; Han, C.C.; Liu, Z.Q.; Guo, J.Y. Isolation and biological activity of triglycerides of the fermented mushroom of Coprinus Comatus. BMC Complement. Altern. Med. 2012, 12, 52. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.; Lai, Q.; Yang, Q.; Dong, Y.; Liu, X.; Wang, W.; Zhang, J.; Jia, L. Antioxidant and hepatoprotective activities of modified polysaccharides from Coprinus comatus in mice with alcohol-induced liver injury. Int. J. Biol. Macromol. 2019, 127, 476–485. [Google Scholar] [CrossRef]
- Zaidman, B.Z.; Wasser, S.P.; Nevo, E.; Mahajna, J. Coprinus comatus and Ganoderma lucidum interfere with androgen receptor function in LNCaP prostate cancer cells. Mol. Biol. Rep. 2008, 35, 107–117. [Google Scholar] [CrossRef]
- de Carvalho, M.P.; Gulotta, G.; do Amaral, M.W.; Lunsdorf, H.; Sasse, F.; Abraham, W.R. Coprinuslactone protects the edible mushroom Coprinus comatus against biofilm infections by blocking both quorum-sensing and MurA. Environ. Microbiol. 2016, 18, 4254–4264. [Google Scholar] [CrossRef]
- Commission Regulation (EC). Commission Regulation (EU) No. 629/2008 of 2 July 2008 Amending Regulation (EC) No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. Union 2008, L 173, 6–9. [Google Scholar]
- Lu, Y.; Zhi, Y.; Miyakawa, T.; Tanokura, M. Metabolic profiling of natural and cultured Cordyceps by NMR spectroscopy. Sci. Rep. 2019, 9, 7735. [Google Scholar] [CrossRef] [PubMed]
- Jedrejko, K.J.; Lazur, J.; Muszynska, B. Cordyceps militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity. Foods 2021, 10, 2634. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Dong, W.; Jiang, G.; Yang, J.; Liu, J.; Zhao, L.; Ma, P. Cordyceps militaris Improves Chronic Kidney Disease by Affecting TLR4/NF-kappaB Redox Signaling Pathway. Oxidative Med. Cell. Longev. 2019, 2019, 7850863. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Sun, J.; Luo, Z.Y.; Rao, S.Q.; Su, Y.J.; Xu, R.R.; Yang, Y.J. Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food Chem. Toxicol. 2012, 50, 1238–1244. [Google Scholar] [CrossRef]
- Guo, M.Z.; Meng, M.; Feng, C.C.; Wang, X.; Wang, C.L. A novel polysaccharide obtained from Craterellus cornucopioides enhances immunomodulatory activity in immunosuppressive mice models via regulation of the TLR4-NF-kappaB pathway. Food Funct. 2019, 10, 4792–4801. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, S.B.; Chen, H.P.; Zhao, Z.Z.; Zhou, Z.Y.; Li, Z.H.; Feng, T.; Liu, J.K. New Acetylenic Acids and Derivatives from the Edible Mushroom Craterellus lutescens (Cantharellaceae). J. Agric. Food Chem. 2017, 65, 3835–3841. [Google Scholar] [CrossRef]
- Garuba, T.; Olahan, G.S.; Lateef, A.A.; Alaya, R.O.; Awolowo, M.; Sulyman, A. Proximate Composition and Chemical Profiles of Reishi Mushroom (Ganoderma lucidum (Curt: Fr.) Karst). J. Sci. Res. 2020, 12, 103–110. [Google Scholar] [CrossRef]
- Ahmad, M.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 2018, 107, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Baby, S.; Johnson, A.J.; Govindan, B. Secondary metabolites from Ganoderma. Phytochemistry 2015, 114, 66–101. [Google Scholar] [CrossRef]
- Hapuarachchi, K.K. Mycosphere Essays 15. Ganoderma lucidum—Are the beneficial medical properties substantiated? Mycosphere 2016, 7, 687–715. [Google Scholar] [CrossRef]
- Kondragunta, K.K.V.; Perumal, K. Antioxidant activity and Folic acid content in indigenous isolates of Ganoderma lucidum. Asian J. Pharm. Anal. 2016, 6, 213–215. [Google Scholar]
- Seto, S.W.; Lam, T.Y.; Tam, H.L.; Au, A.L.; Chan, S.W.; Wu, J.H.; Yu, P.H.; Leung, G.P.; Ngai, S.M.; Yeung, J.H.; et al. Novel hypoglycemic effects of Ganoderma lucidum water-extract in obese/diabetic (+db/+db) mice. Phytomedicine 2009, 16, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, A.; Quagliariello, V.; Del Vecchio, V.; Falco, M.; Luciano, A.; Amruthraj, N.J.; Nasti, G.; Ottaiano, A.; Berretta, M.; Iaffaioli, R.V.; et al. Anticancer and Anti-Inflammatory Properties of Ganoderma lucidum Extract Effects on Melanoma and Triple-Negative Breast Cancer Treatment. Nutrients 2017, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Li, Y.; Pei, G. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response. J. Neuroinflamm. 2017, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Guo, Z.; Zeng, X.; Hao, C.; Zhang, Y.; Zhang, M.; Liu, Y.; Li, H.; Li, J.; Zhang, L. Chemical, biochemical, preclinical and clinical studies of Ganoderma lucidum polysaccharide as an approved drug for treating myopathy and other diseases in China. J. Cell. Mol. Med. 2018, 22, 3278–3297. [Google Scholar] [CrossRef] [PubMed]
- Martirosyan, D.M.; Singharaj, B. Health claims and functional food: The future of functional foods under FDA and EFSA regulation. Funct. Foods Chronic Dis. 2016, 1, 410–417. [Google Scholar]
- Wu, J.Y.; Siu, K.C.; Geng, P. Bioactive Ingredients and Medicinal Values of Grifola frondosa (Maitake). Foods 2021, 10, 95. [Google Scholar] [CrossRef]
- Su, C.H.; Lai, M.N.; Lin, C.C.; Ng, L.T. Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms. Appl. Microbiol. Biotechnol. 2016, 100, 4385–4393. [Google Scholar] [CrossRef]
- Chen, X.; Ji, H.; Zhang, C.; Yu, J.; Liu, A. Structural characterization and antitumor activity of a novel polysaccharide from Grifola frondosa. J. Food Meas. Charact. 2019, 14, 272–282. [Google Scholar] [CrossRef]
- Yu, J.; Ji, H.Y.; Liu, C.; Liu, A.J. The structural characteristics of an acid-soluble polysaccharide from Grifola frondosa and its antitumor effects on H22-bearing mice. Int. J. Biol. Macromol. 2020, 158, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Wu, Q.; Xie, Y.; Zhang, J.; Tan, J. Hypoglycemic effects of Grifola frondosa (Maitake) polysaccharides F2 and F3 through improvement of insulin resistance in diabetic rats. Food Funct. 2015, 6, 3567–3575. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, M.; Ohashi, T.; Fujiwara, Y.; Sonoyama, K.; Nakano, M. Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp. Biol. Med. 2001, 226, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Gao, Z.; Hu, C.; Zhang, J.; Sun, X.; Rong, C.; Jia, L. Antioxidant, antibacterial and anti-aging activities of intracellular zinc polysaccharides from Grifola frondosa SH-05. Int. J. Biol. Macromol. 2017, 95, 778–787. [Google Scholar] [CrossRef]
- Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; Moseley, B.; Neuhäuser-Berthold, M.; Przyrembel, H.; Salminen, S.; Sanz, Y.; Strain, S.J. Scientific Opinion on the substantiation of health claims related to: A combination of millet seed extract, L-cystine and pantothenic acid (ID 1514), amino acids (ID 1711), carbohydrate and protein combination (ID 461), Ribes nigrum L.(ID 2191), Vitis vinifera L.(ID 2157), Grifola frondosa (ID 2556), juice concentrate from berries of Vaccinium. EFSA J. 2011, 9, 2244. [Google Scholar]
- Thongbai, B.; Rapior, S.; Hyde, K.D.; Wittstein, K.; Stadler, M. Hericium erinaceus, an amazing medicinal mushroom. Mycol. Prog. 2015, 14, 91. [Google Scholar] [CrossRef]
- Rahman, M.A.; Abdullah, N.; Aminudin, N. Inhibitory effect on in vitro LDL oxidation and HMG Co-A reductase activity of the liquid-liquid partitioned fractions of Hericium erinaceus (Bull.) Persoon (lion’s mane mushroom). Biomed Res. Int. 2014, 2014, 828149. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Ouchi, K.; Hirasawa, N. The Anti-Inflammatory Effects of Lion’s Mane Culinary-Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes) in a Coculture System of 3T3-L1 Adipocytes and RAW264 Macrophages. Int. J. Med. Mushrooms 2015, 17, 609–618. [Google Scholar] [CrossRef]
- Yi, Z.; Shao-Long, Y.; Ai-Hong, W.; Zhi-Chun, S.; Ya-Fen, Z.; Ye-Ting, X.; Yu-Ling, H. Protective Effect of Ethanol Extracts of Hericium erinaceus on Alloxan-Induced Diabetic Neuropathic Pain in Rats. Evid.-Based Complementary Altern. Med. eCAM 2015, 2015, 595480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, R.-N.; Tang, Q.-J.; Zhang, J.-S.; Yang, Y.; Shang, X.-D. A new diterpene from the fungal mycelia of Hericium erinaceus. Phytochem. Lett. 2015, 11, 151–156. [Google Scholar] [CrossRef]
- Vigna, L.; Morelli, F.; Agnelli, G.M.; Napolitano, F.; Ratto, D.; Occhinegro, A.; Di Iorio, C.; Savino, E.; Girometta, C.; Brandalise, F.; et al. Hericium erinaceus Improves Mood and Sleep Disorders in Patients Affected by Overweight or Obesity: Could Circulating Pro-BDNF and BDNF Be Potential Biomarkers? Evid.-Based Complementary Altern. Med. eCAM 2019, 2019, 7861297. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.M.; Freitas, A.C.; Rocha-Santos, T.A.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.; Duarte, A.C. Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus. J. Food Sci. Technol. 2015, 52, 6927–6939. [Google Scholar] [CrossRef]
- Sheng, K.; Wang, C.; Chen, B.; Kang, M.; Wang, M.; Liu, K.; Wang, M. Recent advances in polysaccharides from Lentinus edodes (Berk.): Isolation, structures and bioactivities. Food Chem. 2021, 358, 129883. [Google Scholar] [CrossRef]
- Hu, D.; Chen, W.; Li, X.; Yue, T.; Zhang, Z.; Feng, Z.; Li, C.; Bu, X.; Li, Q.X.; Hu, C.Y.; et al. Ultraviolet Irradiation Increased the Concentration of Vitamin D2 and Decreased the Concentration of Ergosterol in Shiitake Mushroom (Lentinus edodes) and Oyster Mushroom (Pleurotus ostreatus) Powder in Ethanol Suspension. ACS Omega 2020, 5, 7361–7368. [Google Scholar] [CrossRef]
- Morales, D.; Tejedor-Calvo, E.; Jurado-Chivato, N.; Polo, G.; Tabernero, M.; Ruiz-Rodriguez, A.; Largo, C.; Soler-Rivas, C. In vitro and in vivo testing of the hypocholesterolemic activity of ergosterol- and beta-glucan-enriched extracts obtained from shiitake mushrooms (Lentinula edodes). Food Funct. 2019, 10, 7325–7332. [Google Scholar] [CrossRef]
- Spim, S.R.V.; Castanho, N.; Pistila, A.M.H.; Jozala, A.F.; Oliveira Junior, J.M.; Grotto, D. Lentinula edodes mushroom as an ingredient to enhance the nutritional and functional properties of cereal bars. J. Food Sci. Technol. 2021, 58, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Luo, Z.; Ying, T. Fumigation with essential oils improves sensory quality and enhanced antioxidant ability of shiitake mushroom (Lentinus edodes). Food Chem. 2015, 172, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Ziaja-Sołtys, M.; Radzki, W.; Nowak, J.; Topolska, J.; Jabłońska-Ryś, E.; Sławińska, A.; Skrzypczak, K.; Kuczumow, A.; Bogucka-Kocka, A. Processed Fruiting Bodies of Lentinus edodes as a Source of Biologically Active Polysaccharides. Appl. Sci. 2020, 10, 470. [Google Scholar] [CrossRef]
- Han, D.; Lee, H.T.; Lee, J.B.; Kim, Y.; Lee, S.J.; Yoon, J.W. A Bioprocessed Polysaccharide from Lentinus edodes Mycelia Cultures with Turmeric Protects Chicks from a Lethal Challenge of Salmonella Gallinarum. J. Food Prot. 2017, 80, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, Y.; Yoshino, S.; Yamamoto, S.; Maeda, N.; Azumi, T.; Komoike, Y.; Okuno, K.; Iwasa, T.; Tsurutani, J.; Nakagawa, K.; et al. Lentinula edodes mycelia extract plus adjuvant chemotherapy for breast cancer patients: Results of a randomized study on host quality of life and immune function improvement. Mol. Clin. Oncol. 2017, 7, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Stanilka, J.M.; Rowe, C.A.; Esteves, E.A.; Nieves, C., Jr.; Spaiser, S.J.; Christman, M.C.; Langkamp-Henken, B.; Percival, S.S. Consuming Lentinula edodes (Shiitake) Mushrooms Daily Improves Human Immunity: A Randomized Dietary Intervention in Healthy Young Adults. J. Am. Coll. Nutr. 2015, 34, 478–487. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to various foods/food constituents and “immune function/immune system”(ID 573, 586, 1374, 1566, 1628, 1778, 1793, 1817, 1829, 1939, 2155, 2485, 2486, 2859, 3521, 3774, 3896),“contribution to body defences against external agents”(ID 3635), stimulation of immunological responses (ID 1479, 2064, 2075, 3139), reduction of inflammation (ID 546, 547, 641, 2505, 2862), increase in renal water elimination (ID 2505), treatment of diseases (ID 500), and increasing numbers of gastro intestinal microorganisms (ID 762, 764, 884) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2061. [Google Scholar]
- Shomali, N.; Onar, O.; Karaca, B.; Demirtas, N.; Cihan, A.C.; Akata, I.; Yildirim, O. Antioxidant, Anticancer, Antimicrobial, and Antibiofilm Properties of the Culinary-Medicinal Fairy Ring Mushroom, Marasmius oreades (Agaricomycetes). Int. J. Med. Mushrooms 2019, 21, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Marekov, I.; Momchilova, S.; Grung, B.; Nikolova-Damyanova, B. Fatty acid composition of wild mushroom species of order Agaricales—Examination by gas chromatography-mass spectrometry and chemometrics. J. Chromatography B Anal. Technol. Biomed. Life Sci. 2012, 910, 54–60. [Google Scholar] [CrossRef]
- Zeng, X.; Suwandi, J.; Fuller, J.; Doronila, A.; Ng, K. Antioxidant capacity and mineral contents of edible wild Australian mushrooms. Food Sci. technol. Int. = Cienc. Tecnol. Aliment. Int. 2012, 18, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Li, I.C.; Chiang, L.H.; Wu, S.Y.; Shih, Y.C.; Chen, C.C. Nutrition Profile and Animal-Tested Safety of Morchella esculenta Mycelia Produced by Fermentation in Bioreactors. Foods 2022, 11, 1385. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Niu, L.L.; Liu, H.P.; Wu, Y.R.; Li, M.Y.; Jia, Q. Structural characterization of a novel polysaccharide from Pleurotus citrinopileatus and its antitumor activity on H22 tumor-bearing mice. Int. J. Biol. Macromol. 2021, 168, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Zhao, C.; Zheng, S.; Mei, X.; Huang, K.; Wang, G.; He, X. Anti-obesity and hypolipidemic effect of water extract from Pleurotus citrinopileatus in C57BL/6J mice. Food Sci. Nutr. 2019, 7, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Marçal, S.; Sousa, A.S.; Taofiq, O.; Antunes, F.; Morais, A.M.M.B.; Freitas, A.C.; Barros, L.; Ferreira, I.C.F.R.; Pintado, M. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends Food Sci. Technol. 2021, 110, 418–431. [Google Scholar] [CrossRef]
- Nowakowski, P.; Markiewicz-Żukowska, R.; Soroczyńska, J.; Puścion-Jakubik, A.; Mielcarek, K.; Borawska, M.H.; Socha, K. Evaluation of Toxic Element Content and Health Risk Assessment of Edible Wild Mushrooms. J. Food Compos. Anal. 2021, 96, 103698. [Google Scholar] [CrossRef]
- OECD. Consensus Document on Compositional Considerations for New Varieties of the Cultivated Mushrooms “Agaricus Bisporus”. OECD Pap. 2007, 7, 1–44. [Google Scholar]
- Cheung, P.C.K. The nutritional and health benefits of mushrooms. Nutr. Bull. 2010, 35, 292–299. [Google Scholar] [CrossRef]
- Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B(1)(2)-containing plant food sources for vegetarians. Nutrients 2014, 6, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
- Vinhal Costa Orsine, J.; Carvalho Garbi Novaes, M.R.; Ramirez Asquieri, E. Nutritional value of Agaricus sylvaticus: Mushroom grown in Brazil. Nutr. Hosp. 2012, 27, 449–455. [Google Scholar] [PubMed]
- Ferreira, I.C.; Barros, L.; Abreu, R.M. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009, 16, 1543–1560. [Google Scholar] [CrossRef] [PubMed]
- Radulescu, C.; Buruleanu, L.C.; Georgescu, A.A.; Dulama, I.D. Correlation between enzymatic and non-enzymatic antioxidants in several edible mushrooms species. In Food Engineering; IntechOpen: London, UK, 2019; pp. 1–38. [Google Scholar]
- Çağlarirmak, N. Edible Mushrooms: An Alternative Food Item. In Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7), World Society for Mushroom Biology and Mushroom Products, Arcachon, France, 4–7 October 2011; pp. 548–554. [Google Scholar]
- Beelman, R.B.; Royse, D.J.; Chikthimmah, N. Bioactive Components in Button Mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae) of Nutritional, Medicinal, and Biological Importance (Review). Int. J. Med. Mushrooms 2003, 5, 321–338. [Google Scholar] [CrossRef]
- Winterboer, A.; Eicker, A.; Wehmeyer, A. A preliminary report on the nutrient content of Coprinus comatus. S. Afr. J. Bot. 1983, 2, 83–84. [Google Scholar] [CrossRef]
- Chan, J.S.; Barseghyan, G.S.; Asatiani, M.D.; Wasser, S.P. Chemical Composition and Medicinal Value of Fruiting Bodies and Submerged Cultured Mycelia of Caterpillar Medicinal Fungus Cordyceps militaris CBS-132098 (Ascomycetes). Int. J. Med. Mushrooms 2015, 17, 649–659. [Google Scholar] [CrossRef]
- McKenna, D.J.; Jones, K.; Hughes, K.; Tyler, V.M. Botanical Medicines: The Desk Reference for Major Herbal Supplements; Routledge: London, UK, 2012. [Google Scholar]
- Gargano, M.L.; Zervakis, G.I.; Isikhuemhen, O.S.; Venturella, G.; Calvo, R.; Giammanco, A.; Fasciana, T.; Ferraro, V. Ecology, Phylogeny, and Potential Nutritional and Medicinal Value of a Rare White “Maitake” Collected in a Mediterranean Forest. Diversity 2020, 12, 230. [Google Scholar] [CrossRef]
- Teng, F.; Bito, T.; Takenaka, S.; Yabuta, Y.; Watanabe, F. Vitamin B12[c-lactone], a biologically inactive corrinoid compound, occurs in cultured and dried lion’s mane mushroom (Hericium erinaceus) fruiting bodies. J. Agric. Food Chem. 2014, 62, 1726–1732. [Google Scholar] [CrossRef]
- Mattila, P.; Konko, K.; Eurola, M.; Pihlava, J.M.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen, V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J Agric Food Chem 2001, 49, 2343–2348. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.S.; Desjardin, D.; Perry, B.; Sabaratnam, V.; Abdullah, N. Marasmius sensu stricto in Peninsular Malaysia. Fungal Divers. 2009, 37, 9–100. [Google Scholar]
- Khan, M.A.; Khan, L.A.; Hossain, M.S.; Tania, M.; Uddin, M.N. Investigation on the nutritional composition of the common edible and medicinal mushrooms cultivated in Bangladesh. Bangladesh J. Mushroom 2009, 3, 21–28. [Google Scholar]
- Vetter, J. Biological values of cultivated mushrooms—A review. Acta Aliment. 2019, 48, 229–240. [Google Scholar] [CrossRef]
- Demirbaş, A. Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem. 2001, 75, 453–457. [Google Scholar] [CrossRef]
- Odoh, R. Proximate composition and mineral profiles of selected edible mushroom consumed in northern part of Nigeria. Acad. J. Sci. Res. 2018, 5, 349–364. [Google Scholar]
- Ayaz, F.A.; Torun, H.; Özel, A.; Col, M.; Durán, C.C.V.; Sesli, E.; Colak, A. Nutritional value of some wild edible mushrooms from the Black Sea region (Turkey). Turkish J. Biochem./Turk Biyokim. Derg. 2011, 36, 213–221. [Google Scholar]
- Costa-Silva, F.; Marques, G.; Matos, C.C.; Barros, A.I.R.N.A.; Nunes, F.M. Selenium contents of Portuguese commercial and wild edible mushrooms. Food Chem. 2011, 126, 91–96. [Google Scholar] [CrossRef]
- Gençcelep, H.; Uzun, Y.; Tunçtürk, Y.; Demirel, K. Determination of mineral contents of wild-grown edible mushrooms. Food Chem. 2009, 113, 1033–1036. [Google Scholar] [CrossRef]
- Pelkonen, R.; Alfthan, G.; Järvinen, O. Element Concentrations in Wild Edible Mushrooms in Finland; Finnish Environment Institute: Helsinki, Finland, 2008. [Google Scholar]
- Sharif, S.; Mustafa, G.; Munir, H.; Weaver, C.M.; Jamil, Y.; Shahid, M. Proximate Composition and Micronutrient Mineral Profile of wild Ganoderma lucidum and Four Commercial Exotic Mushrooms by ICP-OES and LIBS. J. Food Nutr. Res. 2016, 4, 703–708. [Google Scholar]
- Roy, D.N.; Azad, A.; Sultana, F.; Anisuzzaman, A.; Khondkar, P. Nutritional profile and mineral composition of two edible mushroom varieties consumed and cultivated in Bangladesh. J. Phytopharmacol. 2015, 4, 217–220. [Google Scholar] [CrossRef]
- Kayode, R.; Laba, S.; Kayode, B.; Aliyu, T.; Salami, K.; Opaleke, D. Chemical Composition of Marasmius Oreades: A Wild Edible Mushroom among Kabba-Bunu Inhabitants of Nigerian. FUTA J. Res. Sci. 2016, 1, 1–8. [Google Scholar]
- Harland, J.; Garton, L. An update of the evidence relating to plant-based diets and cardiovascular disease, type 2 diabetes and overweight. Nutr. Bull. 2016, 41, 323–338. [Google Scholar] [CrossRef]
- Poles, J.; Karhu, E.; McGill, M.; McDaniel, H.R.; Lewis, J.E. The effects of twenty-four nutrients and phytonutrients on immune system function and inflammation: A narrative review. J. Clin. Transl. Res. 2021, 7, 333–376. [Google Scholar]
- Kalogeropoulos, N.; Yanni, A.E.; Koutrotsios, G.; Aloupi, M. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food Chem. Toxicol. 2013, 55, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Sande, D.; Oliveira, G.P.; Moura, M.; Martins, B.A.; Lima, M.; Takahashi, J.A. Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res. Int. 2019, 125, 108524. [Google Scholar] [CrossRef]
- Slawinska, A.; Fornal, E.; Radzki, W.; Skrzypczak, K.; Zalewska-Korona, M.; Michalak-Majewska, M.; Parfieniuk, E.; Stachniuk, A. Study on vitamin D(2) stability in dried mushrooms during drying and storage. Food Chem. 2016, 199, 203–209. [Google Scholar] [CrossRef]
- Manzi, P.; Aguzzi, A.; Pizzoferrato, L. Nutritional value of mushrooms widely consumed in Italy. Food Chem. 2001, 73, 321–325. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Tsai, H.-L.; Mau, J.-L. Antioxidant properties of Agaricus blazei, Agrocybe cylindracea, and Boletus edulis. LWT-Food Sci. Technol. 2007, 40, 1392–1402. [Google Scholar] [CrossRef]
- Blumfield, M.; Abbott, K.; Duve, E.; Cassettari, T.; Marshall, S.; Fayet-Moore, F. Examining the health effects and bioactive components in Agaricus bisporus mushrooms: A scoping review. J. Nutr. Biochem. 2020, 84, 108453. [Google Scholar] [CrossRef]
- Grant, W.B.; Schuitemaker, G.E. Health benefits of higher serum 25-hydroxyvitamin D levels in The Netherlands. J. Steroid Biochem. Mol. Biol. 2010, 121, 456–458. [Google Scholar] [CrossRef] [PubMed]
- Hypponen, E.; Laara, E.; Reunanen, A.; Jarvelin, M.R.; Virtanen, S.M. Intake of vitamin D and risk of type 1 diabetes: A birth-cohort study. Lancet 2001, 358, 1500–1503. [Google Scholar] [CrossRef]
- Karras, S.N.; Fakhoury, H.; Muscogiuri, G.; Grant, W.B.; van den Ouweland, J.M.; Colao, A.M.; Kotsa, K. Maternal vitamin D levels during pregnancy and neonatal health: Evidence to date and clinical implications. Ther. Adv. Musculoskelet. Dis. 2016, 8, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F.; Schwarz, J.; Takenaka, S.; Miyamoto, E.; Ohishi, N.; Nelle, E.; Hochstrasser, R.; Yabuta, Y. Characterization of vitamin B(1)(2)compounds in the wild edible mushrooms black trumpet (Craterellus cornucopioides) and golden chanterelle (Cantharellus cibarius). J. Nutr. Sci. Vitaminol. 2012, 58, 438–441. [Google Scholar] [CrossRef]
- Kala, K.; Krakowska, A.; Gdula-Argasinska, J.; Opoka, W.; Muszynska, B. Assessing the Bioavailability of Zinc and Indole Compounds from Mycelial Cultures of the Bay Mushroom Imleria badia (Agaricomycetes) Using In Vitro Models. Int. J. Med. Mushrooms 2019, 21, 343–352. [Google Scholar] [CrossRef]
- Teke, A.N.; Bi, M.E.; Ndam, L.M.; Kinge, T.R. Nutrient and mineral components of wild edible mushrooms from the Kilum-Ijim forest, Cameroon. Afr. J. Food Sci. 2021, 15, 152–161. [Google Scholar]
Mushroom Species | Ash | Energy | Protein | Sugar | Carbohydrates | Fibres | Fat | Saturated | Unsatu-Rated | Salt |
---|---|---|---|---|---|---|---|---|---|---|
Agaricus bisporus | 9.3 | 336 Kcal/100 g–1424 Kj/100 g | 25.1 | <0.1 | 52.7 | 2.9 | 1.4 | 23.9 | 76.1 | <0.1 |
Agaricus Blazei | 8.4 | 335 Kcal/100 g–1418 Kj/100 g | 28.6 | <0.1 | 48.4 | 6.0 | 1.6 | 41.8 | 58.2 | 1.0 |
Amanita caesarea | 14.4 | 304 Kcal/100 g–1276 Kj/100 g | 24.0 | <0.1 | 31.9 | 14.9 | 5.6 | 29.9 | 70.1 | 1.1 |
Boletus edulis | 6.4 | 347 Kcal/100 g–1453 Kj/100 g | 21.9 ± 0.2 | <0.1 | 59.2 | 9.9 | 2.6 | 26.2 | 73.8 | <0.1 |
Cantharellus cibarius | 13.2 | 298 Kcal/100 g–1257 Kj/100 g | 19.9 | <0.1 | 43.5 | 12.4 | 2.2 | 42.3 | 57.8 | <0.1 |
Coprinus comatus | 10.5 | 298 Kcal/100 g–1260 Kj/100 g | 14.2 | <0.1 | 53.8 | 12.3 | 0.9 | 24.3 | 75.7 | <0.1 |
Cordyceps militaris | 4.4 | 317 Kcal/100 g–1341 Kj/100 g | 23.1 | 0.9 | 49.3 | 11.9 | 0.4 | 34.7 | 65.5 | 0.3 |
Craterellus cornucopioides | 13.3 | 329 Kcal/100 g–1387 Kj/100 g | 19.5 | <0.1 | 45.7 | 7.7 | 5.9 | 30.4 | 69.6 | 0.1 |
Craterellus lutescens | 8.9 | 342 Kcal/100 g–1440 Kj/100 g | 14.5 | <0.1 | 52.4 | 12.3 | 5.5 | 44.0 | 55.4 | 0.5 |
Ganoderma lucidum | 2.8 | 367 Kcal/100 g–1553 Kj/100 g | 19.2 | <0.1 | 57.8 | 11.3 | 2.1 | 21.7 | 78.3 | <0.1 |
Grifola frondosa | 1.5 | 346 Kcal/100 g–1462 Kj/100 g | 13.8 | 0.3 | 61.3 | 11.4 | 2.6 | 22.9 | 77.1 | 0.1 |
Hericium erinaceus | 7.1 | 355 Kcal/100 g–1502 Kj/100 g | 19.9 | <0.1 | 59.2 | 3.3 | 3.6 ± 0.1 | 41.8 | 58.2 | <0.1 |
Lentinula edodes | 6.1 | 340 Kcal/100 g–1443 Kj/100 g | 20.7 | <0.1 | 59.5 | 3.8 | 1.3 | 25.3 | 74.7 | <0.1 |
Marasmius oreades | 1.3 | 355 Kcal/100 g–1500 Kj/100 g | 38.5 | <0.1 | 36.1 | 11.6 | 3.8 | 36.0 | 64.0 | <0.1 |
Morchella elata | 11.5 | 306 Kcal/100 g–1291 Kj/100 g | 28.2 | <0.1 | 33.5 | 13.4 | 3.6 | 12.8 | 87.3 | <0.1 |
Pleurotus citrinopileatus | 7.9 | 330 Kcal/100 g–1395 Kj/100 g | 37.6 | <0.1 | 36.3 | 7.0 | 2.2 | 42.1 | 57.9 | <0.1 |
Mushroom Species | A | B1 | Β2 | Β12 | Β5 | Β6 | Β3 | C | D |
---|---|---|---|---|---|---|---|---|---|
Agaricus bisporus | 0 [105] | 0.88–1.2 [105] | 5.3–6.4 [105] | 0.00053–0.0013 [105] | 1.7 [105] | 1.1 [105] | 36–57 [106] | 27.7 [105] | 0 [107] |
Agaricus Blazei | 0.001 [108] | 1.21 [108] | 3.41 [108] | 0.0017 [108] | 39.4 [108] | 0.83 [108] | 39.9 [108] | 12.65 [108] | 0.018 [108] |
Amanita caesarea | 0.02–1.6 [106] | 0.3–4.5 [106] | 1.3–2.7 [106] | 207 [109] | |||||
Boletus aereus | 0.000782 [36] | 0.37 [36] | 0.82 [36] | 0.00039 [107] | 0.006 [36] | 14.72 [36] | 9.3 [36] | 0.0047 [110] | |
Cantharellus cibarius | 0.12 [111] | 0.11 [111] | 0.00208 [112] | 0.90 [111] | 6.42 [111] | 1.96 [111] 42 [109] | |||
Coprinus comatus | 0.06 [113] | 0.23 [113] | 3.55 [113] | 6.8 [113] | |||||
Cordyceps militaris | 96 [114] | 0.16 [114] | 4.9 [114] | 0 [114] | |||||
Craterellus cornucopioides | 0.11 [111] | 0.06 [111] | 0.00109–0.00265 [107] | 0.86 [111] | 3.34 [111] | 1.89 [111] 87 [109] | 0.0047 [106] | ||
Craterellus lutescens | 0.61 [61] | 0.00139 [61] | |||||||
Ganoderma lucidum | 3.49 [115] | 17.10 [115] | 0.71 [115] | 61.9 [115] | |||||
Grifola frondosa | 0 [116] | 0.15 [116] | 0.36 [116] | 0 [116] | 0.68 [116] | 0.06 [116] | 3.89 [116] | 0.41 [116] | |
Hericium erinaceus | 0.04–0.36 [117] 0.56 & 1.04 [117] | ||||||||
Lentinula edodes | 0.6 [118] | 1.8 [118] | 0.00561 [106] | 12–99 [106] | 25 [118] | 0.001 [118] | |||
Marasmius oreades | 1.2–6.6 [106] | No data [119] | |||||||
Morchella esculenta | 0.00012 [107] | 13 [119] | |||||||
Pleurotus ostreatus | 0.9 [118] | 2.5 [118] | 0.0006 [118] | 34–109 [106] | 20 [118] | 0.0003 [118] |
Mushroom Species | Fe (mg) | Zn (mg) | Mg (mg) | Se (mg) | Cu (mg) |
---|---|---|---|---|---|
Agaricus bisporus | 18.5 [120] | 55.7 [121] | 108.8 [121] | 3–5 [121] | 29.2 [121] |
Agaricus Blazei | 79.63 [108] | 6.61 [108] | 100 [108] | 36 [108] | |
Amanita caesarea | 16.9 [122] | 4.7–9.2 [106] | 12.52 [123] | 2.97 [123] | |
Boletus aereus | 44 [124] | 7.72 [124] | 220 [124] | 1.23 [124,125] | 2.15 [124] |
Cantharellus cibarius | 29.6 [126] | 6.24 [126] | 206 [126] | 0.17 [127] | 46.1 [127] |
Coprinus comatus | 69 [120] | 23.1 [120] | 16 [120] | 2.70 [123] | |
Cordyceps militaris | 14.4 [114] | 10 [114] | 3.414 [114] | ||
Craterellus cornucopioides | 41.3 [106] | 0.61 [106] | 97.8 [106] | 0.14 [127] | 0.43 [106] |
Craterellus lutescens | Not detected [125] | ||||
Ganoderma lucidum | 82.6 [128] | 0.7 [129] | 7.95 [129] | 0.72 [129] | 26 [129] |
Grifola frondosa | 0.3 [128] | ||||
Hericium erinaceus | 11.200 [128] | 3.410 [128] | 75.810 [128] | Not detected [128] | 1.101 [128] |
Lentinula edodes | 6.9 [128] | 6.710 [128] | 102.01 [128] | Not detected [128] | 1.101 [128] |
Marasmius oreades | 30.5 [126] | 6.12 [113] | 9.549 [130] | 0.15 [125] | 0.923 [126] |
Morchella esculenta | 19.5 [126] | 9.89 [126] | 181 [126] | 6.26 [126] | |
Pleurotus ostreatus | 10.20 [128] | 4.600 [128] | 125.4± 0.001 [128] | Not detected [128] | 1.420 [128] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimopoulou, M.; Kolonas, A.; Mourtakos, S.; Androutsos, O.; Gortzi, O. Nutritional Composition and Biological Properties of Sixteen Edible Mushroom Species. Appl. Sci. 2022, 12, 8074. https://doi.org/10.3390/app12168074
Dimopoulou M, Kolonas A, Mourtakos S, Androutsos O, Gortzi O. Nutritional Composition and Biological Properties of Sixteen Edible Mushroom Species. Applied Sciences. 2022; 12(16):8074. https://doi.org/10.3390/app12168074
Chicago/Turabian StyleDimopoulou, Maria, Alexandros Kolonas, Stamatis Mourtakos, Odysseas Androutsos, and Olga Gortzi. 2022. "Nutritional Composition and Biological Properties of Sixteen Edible Mushroom Species" Applied Sciences 12, no. 16: 8074. https://doi.org/10.3390/app12168074