On the Determination of Acoustic Properties of Membrane Type Structural Skin Elements by Means of Surface Displacements
Abstract
:1. Introduction
Overview of Measuring Methods
2. Materials and Methods
2.1. Theory
2.1.1. Determination of Normal Incidence Sound Transmission Loss
2.1.2. Determination of the Normal-Incidence Sound Absorption and Transmission Coefficient
2.2. Description of Numerical Study
2.2.1. Single Layer Membrane Sample
2.2.2. Rectangular Shape Membrane Specimen
3. Description of Measurements
3.1. Description of Measurement Setup
3.2. Specimen Description
4. Results
4.1. The Normal Incidence Sound Transmission Loss (Simulations)
4.2. The Normal-Incidence Sound Absorption and Transmission Coefficients (Simulations)
4.3. Measurement Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paech, C. Structural membranes used in modern building facades. Procedia Eng. 2016, 155, 61–70. [Google Scholar] [CrossRef] [Green Version]
- John, G.; Clements-Croome, D.; Jeronimidis, G. Sustainable building solutions: A review of lessons from the natural world. Build. Environ. 2005, 40, 319–328. [Google Scholar] [CrossRef]
- Urbán, D.; Roozen, N.B.; Zaťko, P.; Rychtáriková, M.; Tomašovič, P.; Glorieux, C. Assessment of sound insulation of naturally ventilated double skin facades. Build. Environ. 2016, 110, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Urbán, D.; Tomašovič, P.; Rychtáriková, M.; Roozen, N.B.; Glorieux, C.H. Sound propagation within a double skin facade and its influence on the speech Privacy in offices. In Proceedings of the Euronoise 2015, Maastrich, The Netherlands, 31 May–3 June 2015; pp. 2543–2548. [Google Scholar]
- Martens, M.J.; Michelsen, A. Absorption of acoustic energy by plant leaves. J. Acoust. Soc. Am. 1981, 69, 303–306. [Google Scholar] [CrossRef]
- Strutt, J.W.; Rayleigh, B. The Theory of Sound; Macmillan and Co.: London, UK, 1877. [Google Scholar]
- Mazumdar, J. A Review of Approximate Methods for Determining the Vibrational Modes of Membranes. Shock. Vib. Dig. 1984, 16, 9. [Google Scholar] [CrossRef]
- Laura, P.A.; Romanelli, E.; Maurizi, M.J. On the analysis of waveguides of doubly-connected cross-section by the method of conformal mapping. J. Sound Vib. 1972, 20, 27–38. [Google Scholar] [CrossRef]
- Wang, C.Y. On thepolygonal membrane with a circular core. J. Sound Vib. 1998, 215, 195–199. [Google Scholar] [CrossRef]
- Wang, C.Y. Vibration of an annular membrane attached to a free, rigid core. J. Sound Vib. 2003, 4, 776–782. [Google Scholar] [CrossRef]
- Ho, K.M.; Cheng, C.K.; Yang, Z.; Zhang, X.X.; Sheng, P. Broadband locally resonant sonic shields. Appl. Phys. Lett. 2003, 83, 5566–5568. [Google Scholar] [CrossRef]
- Huang, T.Y.; Shen, C.; Jing, Y. Membrane-and plate-type acoustic metamaterials. J. Acoust. Soc. Am. 2016, 139, 3240–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciaburro, G.; Iannace, G. Modeling acoustic metamaterials based on reused buttons using data fitting with neural network. J. Acoust. Soc. Am. 2021, 150, 51–63. [Google Scholar] [CrossRef]
- Naify, C.J.; Chang, C.M.; McKnight, G.; Nutt, S. Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses. J. Appl. Phys. 2011, 110, 124903. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Dai, H.M.; Chan, N.H.; Ma, G.C.; Sheng, P. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 2010, 96, 041906. [Google Scholar] [CrossRef]
- Naify, C.J.; Chang, C.M.; McKnight, G.; Scheulen, F.; Nutt, S. Membrane-type metamaterials: Transmission loss of multi-celled arrays. J. Appl. Phys. 2011, 109, 104902. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Ma, G.; Yang, Z.; Sheng, P. Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 2013, 110, 134301. [Google Scholar] [CrossRef]
- Sharma, G.S.; Skvortsov, A.; MacGillivray, I.; Kessissoglou, N. Sound scattering by a bubble metasurface. Phys. Rev. B 2020, 102, 214308. [Google Scholar] [CrossRef]
- Yang, Z.; Mei, J.; Yang, M.; Chan, N.H.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 2008, 101, 204301. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, G.; Zhou, X.; Hu, G.; Sun, C.T. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model. J. Acoust. Soc. Am. 2014, 136, 969–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wen, J.; Xiao, Y.; Wen, X.; Wang, J. Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials. Phys. Lett. A 2012, 376, 1489–1494. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, J.; Zhao, H.; Yu, D.; Cai, L.; Wen, X. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells. J. Appl. Phys. 2013, 114, 063515. [Google Scholar] [CrossRef]
- Naify, C.J.; Chang, C.M.; McKnight, G.; Nutt, S.R. Scaling of membrane-type locally resonant acoustic metamaterial arrays. J. Acoust. Soc. Am. 2012, 132, 2784–2792. [Google Scholar] [CrossRef] [Green Version]
- Roozen, N.B.; Urban, D.; Piana, E.A.; Glorieux, C. On the use of dynamic vibration absorbers to counteract the loss of sound insulation due to mass-spring-mass resonance effects in external thermal insulation composite systems. Appl. Acoust. 2021, 178, 107999. [Google Scholar] [CrossRef]
- Sharma, G.S.; Sarkar, A. Directivity-based passive barrier for local control of low-frequency noise. J. Theor. Comput. Acoust. 2018, 26, 1850012. [Google Scholar] [CrossRef]
- Fuller, C.R. Active control of sound transmission/radiation from elastic plates by vibration inputs: I. Analysis. J. Sound Vib. 1990, 136, 1–15. [Google Scholar] [CrossRef]
- Sharma, G.S.; Sarkar, A. Directivity based control of acoustic radiation. Appl. Acoust. 2019, 154, 226–235. [Google Scholar] [CrossRef]
- ISO 10534-1. Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 1: Method Using Standing Wave Ratio; International Standards Organization: Geneva, Switzerland, 1996. [Google Scholar]
- ISO 10534-2. Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method; International Standards Organization: Geneva, Switzerland, 1998. [Google Scholar]
- ISO 354. Acoustics—Measurement of Sound Absorption in a Reverberation Room; International Standards Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Cox, T.; d’Antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Kuipers, E.R. Measuring Sound Absorption Using Local Field Assumptions; University of Twente: Enschede, The Netherlands, 2013. [Google Scholar]
- Kimura, K.; Yamamoto, K. The required sample size in measuring oblique incidence absorption coefficient experimental study. Appl. Acoust. 2002, 63, 567–578. [Google Scholar] [CrossRef]
- Champoux, Y.; L’espérance, A. Numerical evaluation of errors associated with the measurement of acoustic impedance in a free field using two microphones and a spectrum analyzer. J. Acoust. Soc. Am. 1988, 84, 30–38. [Google Scholar] [CrossRef]
- Nocke, C. In-situ acoustic impedance measurement using a free-field transfer function method. Appl. Acoust. 2000, 59, 253–264. [Google Scholar] [CrossRef]
- Liu, Y.; Jacobsen, F. Measurement of absorption with ap-u sound intensity probe in an impedance tube. J. Acoust. Soc. Am. 2005, 118, 2117–2120. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.M.; Yang, Z.; Zhang, X.X.; Sheng, P. Measurements of sound transmission through panels of locally resonant materials between impedance tubes. Appl. Acoust. 2005, 66, 751–765. [Google Scholar] [CrossRef]
- Selamet, A.; Ji, Z.L. Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet. J. Sound Vib. 1999, 223, 197–212. [Google Scholar] [CrossRef]
- ISO 10140-2. Acoustics—Laboratory Measurement of Sound Insulation of Building Elements—Part 2: Measurement of Airborne Sound Insulation; International Standards Organization: Geneva, Switzerland, 2010. [Google Scholar]
- ISO 15186-1. Acoustics—Measurement of Sound Insulation in Buildings and of Building Elements Using Sound Intensity—Part 1: Laboratory Measurements; International Standards Organization: Geneva, Switzerland, 2000. [Google Scholar]
- ISO 16283-1. Acoustics—Field Measurement of Sound Insulation in Buildings and of Building Elements—Part 1: Airborne Sound Insulation; International Standards Organization: Geneva, Switzerland, 2014. [Google Scholar]
- ISO 16283-3. Acoustics—Field Measurement of Sound Insulation in Buildings and of Building Elements—Part 3: Façade Sound Insulation; International Standards Organization: Geneva, Switzerland, 2016. [Google Scholar]
- ISO 15186-2. Acoustics—Measurement of Sound Insulation in Buildings and of Building Elements Using Sound Intensity—Part 2: Field Measurements; International Standards Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Roozen, N.B.; Leclere, Q.; Urbán, D.; Kritly, L.; Glorieux, C. Assessment of the sound reduction index of building elements by near field excitation through an array of loudspeakers and structural response measurements by laser Doppler vibrometry. Appl. Acoust. 2018, 140, 225–235. [Google Scholar] [CrossRef]
- Roozen, N.B.; Leclère, Q.; Urbán, D.; Echenagucia, T.M.; Block, P.; Rychtáriková, M.; Glorieux, C. Assessment of the airborne sound insulation from mobility vibration measurements; a hybrid experimental numerical approach. J. Sound Vib. 2018, 432, 680–698. [Google Scholar] [CrossRef]
- Roozen, N.B.; Labelle, L.; Leclere, Q.; Ege, K.; Alvarado, S. Non-contact experimental assessment of apparent dynamic stiffness of constrained-layer damping sandwich plates in a broad frequency range using a Nd: YAG pump laser and a laser Doppler vibrometer. J. Sound Vib. 2017, 395, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Vanlanduit, S.; Vanherzeele, J.; Guillaume, P.; De Sitter, G. Absorption measurement of acoustic materials using a scanning laser Doppler vibrometer. J. Acoust. Soc. Am. 2005, 117, 1168–1172. [Google Scholar] [CrossRef]
- ASTM E2571-09. Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method; ASTM International: Conshohocken, PA, USA, 2011. [Google Scholar]
- Piana, E.A.; Roozen, N.B.; Scrosati, C. Transmission tube measurements on the DENORMS round robin test material samples. In Proceedings of the 26th International Congress on Sound and Vibration, Montréal, QC, Canada, 7–11 July 2019. [Google Scholar]
- Salissou, Y.; Panneton, R.; Doutres, O. Complement to standard method for measuring normal incidence sound transmission loss with three microphones. J. Acoust. Soc. Am. 2012, 131, EL216–EL222. [Google Scholar] [CrossRef] [Green Version]
- Seybert, A.F.; Ross, D.F. Experimental determination of acoustic properties using a two microphone random-excitation technique. J. Acoust. Soc. Am. 1977, 61, 1362–1370. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.Y.; Blaser, D.A. Transfer function method of measuring acoustic intensity in a duct system with flow. J. Acoust. Soc. Am. 1980, 68, 1570–1577. [Google Scholar] [CrossRef]
- Chung, J.Y.; Blaser, D.A. Transfer function method of measuring in-duct acoustic properties. II. Experiment. J. Acoust. Soc. Am. 1980, 68, 914–921. [Google Scholar] [CrossRef]
- Bonfiglio, P.; Pompoli, F. A single measurement approach for the determination of the normal incidence Transmission Loss. J. Acoust. Soc. Am. 2008, 124, 1577–1583. [Google Scholar] [CrossRef]
- Salissou, Y.; Panneton, R. A general wave decomposition formula for the measurement of normal incidence sound transmission loss in impedance tube. J. Acoust. Soc. Am. 2009, 125, 2083–2090. [Google Scholar] [CrossRef]
- Peng, D.L.; Hu, P.; Zhu, B.L. The modified method of measuring the complex transmission coefficient of multilayer acoustical panel in impedance tube. Appl. Acoust. 2008, 69, 1240–1248. [Google Scholar] [CrossRef]
- Wei, Z.; Hou, H.; Gao, N.; Huang, Y.; Yang, J. Normal incidence sound transmission loss evaluation with a general upstream tube wave decomposition formula. J. Acoust. Soc. Am. 2018, 144, 2344–2353. [Google Scholar] [CrossRef] [PubMed]
- Seybert, A.F. Two-sensor methods for the measurement of sound intensity and acoustic properties in ducts. J. Acoust. Soc. Am. 1988, 83, 2233–2239. [Google Scholar] [CrossRef] [Green Version]
- Rindel, J.H. Sound Insulation in Buildings; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Tijs, E.; Druyvesteyn, E. An intensity method for measuring absorption properties in situ. Acta Acust. United Acust. 2012, 98, 342–353. [Google Scholar] [CrossRef] [Green Version]
- ISO 5136. Acoustics—Determination of Sound Power Radiated into a Duct By Fans and Other Air-Moving Devices—In-Duct Method; International Standards Organization: Geneva, Switzerland, 2003. [Google Scholar]
- ISO 7235. Acoustics—Laboratory Measurement Procedures for Ducted Silencers and Air-Terminal Units—Insertion LOSS, Flow Noise and Total Pressure Loss; International Standards Organization: Geneva, Switzerland, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbán, D.; Roozen, N.B.; Jandák, V.; Brothánek, M.; Jiříček, O. On the Determination of Acoustic Properties of Membrane Type Structural Skin Elements by Means of Surface Displacements. Appl. Sci. 2021, 11, 10357. https://doi.org/10.3390/app112110357
Urbán D, Roozen NB, Jandák V, Brothánek M, Jiříček O. On the Determination of Acoustic Properties of Membrane Type Structural Skin Elements by Means of Surface Displacements. Applied Sciences. 2021; 11(21):10357. https://doi.org/10.3390/app112110357
Chicago/Turabian StyleUrbán, Daniel, N. B. Roozen, Vojtech Jandák, Marek Brothánek, and Ondřej Jiříček. 2021. "On the Determination of Acoustic Properties of Membrane Type Structural Skin Elements by Means of Surface Displacements" Applied Sciences 11, no. 21: 10357. https://doi.org/10.3390/app112110357