Mathematical Determination of the Upper and Lower Limits of the Diffuse Fraction at Any Site
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Determination of the kd Limits
3.2. Evaluation of the Methodology
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giesen, R.H.; van den Broeke, M.R.; Oerlemans, J.; Andreassen, L.M. Surface Energy Balance in the Ablation Zone of Midtdalsbreen, a Glacier in Southern Norway: Interannual Variability and the Effect of Clouds. J. Geophys. Res. 2008, 113, D21111. [Google Scholar] [CrossRef]
- Steinbacher, M.; Bingemer, H.G.; Schmidt, U. Measurements of the Exchange of Carbonyl Sulfide (OCS) and Carbon Disulfide (CS 2) between Soil and Atmosphere in a Spruce Forest in Central Germany. Atmos. Environ. 2004, 38, 6043–6052. [Google Scholar] [CrossRef]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Kambezidis, H.D. Current Trends in Solar Radiation Modeling: The Paradigm of MRM. J. Fundam. Renew. Energy Appl. 2016, 6, 2014–2015. [Google Scholar] [CrossRef]
- Babatunde, A.; Vincent, O.O. Estimation of Hourly Clearness Index and Diffuse Fraction Over Coastal and Sahel Regions of Nigeria Using NCEP/NCAR Satellite Data. J. Energy Res. Rev. 2021, 7, 1–18. [Google Scholar] [CrossRef]
- Badescu, V.; Gueymard, C.A.; Cheval, S.; Oprea, C.; Baciu, M.; Dumitrescu, A.; Iacobescu, F.; Milos, I.; Rada, C. Computing Global and Diffuse Solar Hourly Irradiation on Clear Sky. Review and Testing of 54 Models. Renew. Sustain. Energy Rev. 2012, 16, 1636–1656. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J. Global, Direct and Diffuse Solar Radiation on Horizontal and Tilted Surfaces in Jeddah, Saudi Arabia. Appl. Energy 2010, 87, 568–576. [Google Scholar] [CrossRef]
- Berrizbeitia, S.E.; Gago, E.J.; Muneer, T. Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis. Energies 2020, 13, 701. [Google Scholar] [CrossRef] [Green Version]
- Dervishi, S.; Mahdavi, A. Computing Diffuse Fraction of Global Horizontal Solar Radiation: A Model Comparison. Sol. Energy 2012, 86, 1796–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijazin, M.I. The Diffuse Fraction of Hourly Solar Radiation for Amman/Jordan. Renew. Energy 1998, 13, 249–253. [Google Scholar] [CrossRef]
- Grudzińska, M.; Jakusik, E. The Efficiency of a Typical Meteorological Year and Actual Climatic Data in the Analysis of Energy Demand in Buildings. Build. Serv. Eng. Res. Technol. 2015, 36, 658–669. [Google Scholar] [CrossRef]
- Chan, A.L.S. Generation of Typical Meteorological Years Using Genetic Algorithm for Different Energy Systems. Renew. Energy 2016, 90, 1–13. [Google Scholar] [CrossRef]
- Fernández, M.D.; López, J.C.; Baeza, E.; Céspedes, A.; Meca, D.E.; Bailey, B. Generation and Evaluation of Typical Meteorological Year Datasets for Greenhouse and External Conditions on the Mediterranean Coast. Int. J. Biometeorol. 2015, 59, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.; Pfeifroth, U.; Träger-Chatterjee, C.; Trentmann, J.; Cremer, R. Digging the METEOSAT Treasure-3 Decades of Solar Surface Radiation. Remote Sens. 2015, 7, 8067–8101. [Google Scholar] [CrossRef] [Green Version]
- Huld, T.; Müller, R.; Gambardella, A. A New Solar Radiation Database for Estimating PV Performance in Europe and Africa. Sol. Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and Data Description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Urraca, R.; Gracia-Amillo, A.M.; Koubli, E.; Huld, T.; Trentmann, J.; Riihelä, A.; Lindfors, A.V.; Palmer, D.; Gottschalg, R.; Antonanzas-Torres, F. Extensive Validation of CM SAF Surface Radiation Products over Europe. Remote Sens. Environ. 2017, 199, 171–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urraca, R.; Huld, T.; Gracia-Amillo, A.; Martinez-de-Pison, F.J.; Kaspar, F.; Sanz-Garcia, A. Evaluation of Global Horizontal Irradiance Estimates from ERA5 and COSMO-REA6 Reanalyses Using Ground and Satellite-Based Data. Sol. Energy 2018, 164, 339–354. [Google Scholar] [CrossRef]
# | Site (Abbreviation) | Location | φ (deg) | λ (deg) | z (m asl) | Surface Type | Topography | I/II | Period |
---|---|---|---|---|---|---|---|---|---|
1 | Athens (ATH) | Greece | 37.97 N | 23.72 E | 107 | shrubs, trees | hilly | II | 1953–present |
2 | Boulder (BOU) | USA | 40.05 N | 105.01 W | 1577 | grass | flat | I | 1992–2016 |
3 | Carpentras (CAR) | France | 44.08 N | 5.06 E | 100 | cultivated | hilly | I | 1996–2018 |
4 | De Aar (DAA) | South Africa | 30.67 S | 23.99 E | 1287 | sand | flat | I | 2000–present |
5 | Gandhinagar (GAN) | India | 23.11 N | 72.63 E | 65 | shrubs | flat | II | 2014–present |
6 | Huancayo Observatory (OHY) | Peru | 12.05 S | 75.32 W | 3314 | grass | mountain valley | I | 2017–present |
7 | Ilorin (ILO) | Nigeria | 8.53 N | 4.57 E | 350 | shrubs | flat | I | 1992–2005 |
8 | Kishinev (KIS) | Moldova | 47.00 N | 28.82 E | 205 | grass | flat | II | |
9 | Lerwick (LER) | UK | 60.14 N | 1.18 W | 80 | grass | hilly | I | 2001–present |
10 | Lindenberg (LIN) | Germany | 52.21 N | 14.12 E | 125 | cultivated | hilly | I | 1994–present |
11 | Payerne (PAY) | Switzerland | 46.82 N | 6.94 E | 491 | cultivated | hilly | I | 1992–present |
12 | Regina (REG) | Canada | 50.21 N | 104.71 W | 578 | cultivated | flat | I | 1995–2011 |
13 | Sonnblick (SON) | Austria | 47.05 N | 12.96 E | 3109 | rocks | mountain top | I | 2013–present |
14 | Solar Village (SOV) | Saudi Arabia | 24.91 N | 46.41 E | 650 | desert, sand | flat | I | 1998–2002 |
Site (Year) | Equation of the Best-Fit Curve | R2 | kdu | kdl |
---|---|---|---|---|
AΤH (2000) | Hbn = 750.35 kd2 − 1911.13 kd + 1160.42 | 0.99 | 0.79 | 0.26 |
BOU (1999) | Hbn = 764.84 kd2 − 1906.61 kd + 1145.82 | 0.99 | 0.79 | 0.26 |
CAR (2018) | Hbn = 868.13 kd2 − 2035.91 kd + 1172.93 | 0.99 | 0.77 | 0.26 |
DAA (2017) | Hbn = 829.67 kd2 − 2009.26 kd + 1182.98 | 0.99 | 0.78 | 0.26 |
GAN (2015) | Hbn = 923.82 kd2 − 2150.63 kd + 1230.29 | ≈1.00 | 0.77 | 0.26 |
OHY (2018) | Hbn = 715.87 kd2 − 1879.32 kd + 1165.29 | 0.99 | 0.80 | 0.27 |
ILO (1999) | Hbn = 796.31 kd2 − 2007.88 kd + 1208.37 | 0.99 | 0.79 | 0.26 |
KIS (2020) | Hbn = 781.01 kd2 − 1935.32 kd + 1155.12 | ≈1.00 | 0.78 | 0.26 |
LER (2003) | Hbn = 930.30 kd2 − 2020.92 kd + 1097.60 | 0.94 | 0.73 | 0.24 |
LIN (2018) | Hbn = 779.37 kd2 − 1929.96 kd + 1151.03 | 0.99 | 0.78 | 0.26 |
PAY (2013) | Hbn = 715.85 kd2 − 1856.32 kd + 1140.65 | 0.99 | 0.79 | 0.26 |
REG (2003) | Hbn = 779.37 kd2 − 1929.96 kd + 1151.03 | ≈1.00 | 0.78 | 0.26 |
SOV (2002) | Hbn = 919.21 kd2 − 2192.18 kd + 1270.02 | 0.99 | 0.78 | 0.26 |
SON (2018) | Hbn = 704.02 kd2 − 1833.67 kd + 1129.45 | 0.99 | 0.79 | 0.26 |
Site (Year) | kdu < kd ≤ 1 Overcast Skies | kdl < kd ≤ kdu Intermediate Skies | 0 ≤ kd ≤ kdl Clear Skies | 0 ≤ kd ≤ 1 All Skies |
---|---|---|---|---|
AΤH (2000) | 919 (20.9%) | 1879 (42.7%) | 1602 (36.4%) | 4400 (100%) |
BOU (1999) | 1477 (31.7%) | 1429 (30.6%) | 1758 (37.7%) | 4664 (100%) |
CAR (2018) | 1799 (37.1%) | 1556 (32.1%) | 1496 (30.8%) | 4851 (100%) |
DAA (2017) | 733 (15.5%) | 1288 (27.1%) | 2715 (57.4%) | 4736 (100%) |
GAN (2015) | - | - | - | - |
OHY (2018) | 908 (24.3%) | 957 (25.5%) | 1881 (50.2%) | 3746 (100%) |
ILO (1999) | - | - | - | - |
KIS (2020) | 1524 (36.2%) | 1525 (36.2%) | 1161 (27.6%) | 4210 (100%) |
LER (2003) | 3476 (68.8%) | 1225 (24.2%) | 354 (7.0%) | 5055 (100%) |
LIN (2018) | 1652 (41.5%) | 1515 (38.1%) | 811 (20.4%) | 3978 (100%) |
PAY (2013) | 2100 (43.5%) | 1743 (36.1%) | 986 (20.4%) | 4829 (100%) |
REG (2003) | 2049 (37.6%) | 1932 (35.5%) | 1467 (26.9%) | 5448 (100%) |
SOV (2002) | 872 (18.3%) | 2199 (46.0%) | 1704 (35.7%) | 4775 (100%) |
SON (2018) | 2624 (60.2%) | 952 (21.8%) | 781 (18.0%) | 4357 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kambezidis, H.D.; Kampezidou, S.I.; Kampezidou, D. Mathematical Determination of the Upper and Lower Limits of the Diffuse Fraction at Any Site. Appl. Sci. 2021, 11, 8654. https://doi.org/10.3390/app11188654
Kambezidis HD, Kampezidou SI, Kampezidou D. Mathematical Determination of the Upper and Lower Limits of the Diffuse Fraction at Any Site. Applied Sciences. 2021; 11(18):8654. https://doi.org/10.3390/app11188654
Chicago/Turabian StyleKambezidis, Harry D., Styliani I. Kampezidou, and Dimitra Kampezidou. 2021. "Mathematical Determination of the Upper and Lower Limits of the Diffuse Fraction at Any Site" Applied Sciences 11, no. 18: 8654. https://doi.org/10.3390/app11188654