Non-Destructive Testing of Moisture and Nitrogen Content in Pinus Massoniana Seedling Leaves with NIRS Based on MS-SC-CNN
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Experimental Materials
2.1.1. Near-infrared Spectroscopy Data Acquisition and Processing
2.1.2. Calibration of Moisture and Nitrogen Contents
2.2. Non-Destructive Measurement Models
2.2.1. Multi-Scale Convolutional Neural Network Model
2.2.2. Multi-Scale Short Cut Convolutional Neural Network Model
2.3. Hardware Platforms and Evaluation Criteria
3. Results and Discussion
3.1. Structural Performance Evaluation of MS-SC-CNN Model
3.2. Performance Evaluation of Published Measurement Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- You, Y.; Huang, X.; Zhu, H.; Liu, S.; Liang, H.; Wen, Y.; Wang, H.; Cai, D.; Ye, D. Positive interactions between Pinus massoniana and Castanopsis hystrix species in the uneven-aged mixed plantations can produce more ecosystem carbon in subtropical China. For. Ecol. Manag. 2018, 410, 193–200. [Google Scholar] [CrossRef]
- Cao, L.; Liang, Y.; Wang, Y.; Lu, H. Runoff and soil loss from Pinus massoniana forest in southern China after simulated rainfall. Catena 2015, 129, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Chen, D.; Wang, Y.; Fu, H. Measurement of wheat plants water content based on near-infrared photoelectric sensors. Trans. Chin. Soc. Agric. Mach. 2017, 48, 118–122, 261. [Google Scholar]
- Zhang, Z.; Zhang, K.; Cui, Y.; Qin, C.B.; Li, H. Fast and non-destructive detection of soybean moisture content based on near infrared spectroscopy. Spectrosc. Spectr. Anal. 2018, 38, 63–64. [Google Scholar]
- Ni, C.; Wang, D.; Tao, Y. Variable weighted convolutional neural network for the nitrogen content quantization of Masson pine seedling leaves with near-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 209, 32–39. [Google Scholar] [CrossRef]
- Kusumo, B.H.; Sukartono, S.; Bustan, B.; Purwanto, Y.A. Total nitrogen in rice paddy field independently predicted from soil carbon using Near-Infrared Reflectance Spectroscopy (NIRS). J. Phys. Conf. Ser. IOP Publ. 2019, 1402, 022096. [Google Scholar] [CrossRef] [Green Version]
- Neto, A.J.S.; Lopes, D.C.; Pinto, F.A.C.; Zolnier, S. Vis/NIR spectroscopy and chemometrics for non-destructive estimation of water and chlorophyll status in sunflower leaves. Biosyst. Eng. 2017, 155, 124–133. [Google Scholar] [CrossRef]
- Peng, Y.Q.; Xiao, Y.X.; Fu, Z.T.; Yu-hong, D.; Xin-xing, L.; Hai-jun, Y.; Yong-jun, Z. Water content detection of maize leaves based on multispectral images. Spectrosc. Spectr. Anal. 2020, 40, 1257–1262. [Google Scholar]
- Xue, M.; Ying, M.; Gong, H.; Tao, S.H.; Chen, Y.Z.; Chen, Z.W.; Wang, J.M. Feature wavelength optimization combined with near-infrared technology to detect water content in rice. Food Sci. Technol. 2019, 44, 335–341. [Google Scholar]
- Lu, X.; Luo, Y.; Jiang, P.; Wenwu, H.U. Detection of water content in camellia seeds based on hyperspectrum. Acta Agric. Zhejiangensis 2020, 32, 1302–1310. [Google Scholar]
- Tang, R.; Chen, X.; Li, C. Detection of Nitrogen Content in Rubber Leaves Using Near-Infrared (NIR) Spectroscopy with Correlation-Based Successive Projections Algorithm (SPA). Appl. Spectrosc. 2018, 72, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ru, Y.; Chen, Q.; Wang, J.; Xu, L. Near-infrared hyperspectral imaging for detection and visualization of offal adulteration in ground pork. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119307. [Google Scholar] [CrossRef]
- Liu, J.; Osadchy, M.; Ashton, L.; Foster, M.; Solomon, C.J.; Gibson, S.J. Deep convolutional neural networks for Raman spectrum recognition: A unified solution. Analyst 2017, 142, 4067–4074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuanyuan, C.; Zhibin, W. Quantitative analysis modeling of infrared spectroscopy based on ensemble convolutional neural networks. Chemom. Intell. Lab. Syst. 2018, 181, 1–10. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, X.; Liu, Y.; Hu, Z.; Ding, F. Wood Defect Detection Based on Depth Extreme Learning Machine. Appl. Sci. 2020, 10, 7488. [Google Scholar] [CrossRef]
- Shen, L.; Wang, H.; Liu, Y.; Liu, Y.; Zhang, X.; Fei, Y. Prediction of Soluble Solids Content in Green Plum by Using a Sparse Autoencoder. Appl. Sci. 2020, 10, 3769. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Chen, Z.; Chen, Y.; Wu, L.; Cheng, S.; Lin, P. Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions. Energy Convers. Manag. 2019, 198, 111793. [Google Scholar] [CrossRef]
- Zhong, A.; Li, B.; Luo, N.; Xu, Y.; Zhou, L.; Zhen, X. Image Restoration for Low-Dose CT via Transfer Learning and Residual Network. IEEE Access 2020, 8, 112078–112091. [Google Scholar] [CrossRef]
- Chen, L.; Xu, G.; Tao, T.; Wu, Q. Deep Residual Network for Identifying Bearing Fault Location and Fault Severity Concurrently. IEEE Access 2020, 8, 168026–168035. [Google Scholar] [CrossRef]
- Ni, C.; Zhang, Y.; Wang, D. Moisture Content Quantization of Masson Pine Seedling Leaf Based on Stacked Autoencoder with Near-Infrared Spectroscopy. J. Electr. Comput. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Chen, J. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Sun, J.; Cong, S.; Mao, H.; Wu, X.; Zhang, X.; Wang, P. CARS-ABC-SVR model for predicting leaf moisture of leaf-used lettuce based on hyperspectral. Trans. Chin. Soc. Agric. Eng. 2017, 33, 178–184. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in neural information processing systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Du, X.F.; Qu, X.B.; He, Y.F.; Guo, D. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network. Sensors 2018, 18, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Maximum (%) | Minimum (%) | Average (%) | Variance (%) | |
---|---|---|---|---|
Calibration | 70.740 | 48.260 | 60.255 | 22.753 |
Prediction | 69.250 | 59.130 | 64.580 | 4.731 |
All | 70.740 | 48.260 | 61.302 | 21.796 |
Maximum (%) | Minimum (%) | Average (%) | Variance (%) | |
---|---|---|---|---|
Calibration | 1.354 | 0.072 | 0.502 | 0.033 |
Prediction | 1.334 | 0.126 | 0.768 | 0.118 |
All | 1.354 | 0.072 | 0.563 | 0.066 |
Model | Moisture Content | Nitrogen Content | ||
---|---|---|---|---|
RMSE | RMSE | |||
CNN | 0.965 | 0.336 | 0.836 | 0.084 |
MS-CNN | 0.976 | 0.272 | 0.890 | 0.066 |
MS–SC-CNN | 0.977 | 0.242 | 0.906 | 0.061 |
Model | Moisture Content | Nitrogen Content | ||
---|---|---|---|---|
RMSE | RMSE | |||
PLSR | 0.898 | 0.677 | 0.771 | 0.127 |
SVR | 0.902 | 0.705 | 0.748 | 0.132 |
ANN | 0.932 | 0.556 | 0.768 | 0.127 |
MS–SC-CNN | 0.977 | 0.242 | 0.906 | 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Zhu, T.; Li, Z.; Ni, C. Non-Destructive Testing of Moisture and Nitrogen Content in Pinus Massoniana Seedling Leaves with NIRS Based on MS-SC-CNN. Appl. Sci. 2021, 11, 2754. https://doi.org/10.3390/app11062754
Huang Z, Zhu T, Li Z, Ni C. Non-Destructive Testing of Moisture and Nitrogen Content in Pinus Massoniana Seedling Leaves with NIRS Based on MS-SC-CNN. Applied Sciences. 2021; 11(6):2754. https://doi.org/10.3390/app11062754
Chicago/Turabian StyleHuang, Zhuo, Tingting Zhu, Zhenye Li, and Chao Ni. 2021. "Non-Destructive Testing of Moisture and Nitrogen Content in Pinus Massoniana Seedling Leaves with NIRS Based on MS-SC-CNN" Applied Sciences 11, no. 6: 2754. https://doi.org/10.3390/app11062754