Nutritional Influences on Skatole Formation and Skatole Metabolism in the Pig
Simple Summary
Abstract
1. Introduction
2. Physiology of Skatole Formation and Deposition in Adipose Tissue
2.1. Biochemical Pathway and Microbial Activity
2.2. Anatomical Sites of Skatole Formation
2.3. Origin of Tryptophan as a Precursor for Skatole Synthesis
2.4. Metabolism of Skatole in Liver and Kidney
2.5. Accretion of Skatole in Adipose Tissue
2.6. Summary of the Physiological Mechanisms Leading to Elevated Skatole in Adipose Tissue
3. Effects of Diet and Feed Additives on Skatole Formation, Absorption, Metabolism and Accretion in Adipose Tissue of Pigs
3.1. Effects of Diet on TRP Availability in the Colon and Consequences for Skatole Formation (Step A, Figure 2)
3.2. Effects of Diet or Feed Supplements on Microbial Population in the Gut and Consequences for Skatole Production (Step B, Figure 2)
3.3. Dietary Manipulations Resulting in Higher Energy Availability for Microbial Activity and Their Consequences for Skatole Formation (Step C, Figure 2)
feed component | % in diet | % effective ingredient in diet | feeding duration (d) | decrease of skatole (p < 0,05) in | [ref.] | ||
---|---|---|---|---|---|---|---|
adipose tissue | blood | digesta/feces | |||||
feed components with main effective ingredient inulin | |||||||
dried chicory roots | 10 | n.d. | 16 | - | - | n.d | [11] |
10-13.3 | 3.6–4.7 | 7–14 | - | - | n.d | [94] | |
25 | 13.95 | 7 | + | + | n.d | [12] | |
14 | + | + | n.d | ||||
42 | + | + | n.d | ||||
crude chicory roots (25% DM) | 56.3 | 6.9 | 28 | + | + | n.d | |
42 | + | + | n.d | ||||
63 | + | + | n.d | ||||
dried chicory root extract | 3 | 1.8 | 14 | - | n.d | n.d | [13] |
2.1 | 28 | - | n.d | - | [93] | ||
2.1 | 30 | - | n.d | - | [88] | ||
6 | 3.6 | 14 | + | n.d | n.d | [13] | |
4.2 | 28 | + | n.d | + | [93] | ||
4.2 | 30 | + | n.d | + | [88] | ||
9 | 5.4 | 14 | + | n.d | n.d | [13] | |
6.3 | 28 | + | n.d | + | [93] | ||
6.3 | 30 | + | n.d | + | [88] | ||
Inulin | 16.3 | 15.5 | 42 | + | + | n.d | [12] |
Jerusalem artichoke | 8.1 | 4.2 | 7 | - | n.d | + | [95] |
12.2 | 6.3 | 7 | (+) | n.d | + | ||
other feed components | |||||||
raw potato starch | 10 | n.d. | 28–42 | - | n.d | n.d | [91] |
10 | n.d. | 14 | n.d. | + | n.d. | [18] | |
20 | n.d. | 14 | + | n.d | n.d | [90] | |
n.d. | 14–21 | + | n.d | + | [75] | ||
30 | n.d. | 14–21 | + | n.d | + | ||
lupin seeds | 10 | n.d. | 28–42 | - | n.d | n.d | [91] |
25 | n.d. | 30 | + | n.d | + | [88] | |
sugar beet pulp | 10 | n.d | 28 | n.d | + | - | [28] |
15 | n.d | fattening period | - | n.d | n.d | [96] | |
20 | n.d. | 30 | + | n.d | n.d | [97] |
3.4. Effect of Feeding on the Absorption Rate of Skatole (Step D, Figure 2)
3.5. Effects of Feeding on Degradation of Skatole in the Liver and Kidney (Step E, Figure 2)
3.6. Effects of Feeding on Accumulation of Skatole in Adipose Tissue (Step F, Figure 2)
4. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- Bonneau, M. Use of entire males for pig meat in the European Union. Meat Sci. 1998, 49, 257–272. [Google Scholar]
- Patterson, R.L.S. 5-alpha-androst-16-en-3-one: Compound responsible for taint in boar fat. J. Sci. Food Agric. 1968, 19, 31–38. [Google Scholar]
- Claus, R.; Hoffman, B.; Karg, H. Determination of 5 -androst-16-en-3-one, a boar taint steroid in pigs, with reference to relationships to testosterone. J. Anim. Sci. 1971, 33, 1293–1297. [Google Scholar]
- Vold, E. Fleischproduktionseigenschaften bei Ebern und Kastraten. IV. Organoleptische und gaschromatographische Untersuchungen wasserdampfflüchtiger Stoffe des Rückenspecks von Ebern; Report No. 238; Institute of Animal Genetics and Breeding, NLH: Vollebekk, Norway, 1970. [Google Scholar]
- Jensen, M.T.; Cox, R.P.; Jensen, B.B. 3-Methylindole (skatole) and indole production by mixed populations of pig fecal bacteria. Appl. Environ. Microb. 1995, 61, 3180–3184. [Google Scholar]
- Yokoyama, M.T.; Carlson, J.R. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am. J. Clin. Nutr. 1979, 32, 173–178. [Google Scholar]
- Weiler, U.; Font I Furnols, M.; Fischer, K.; Kemmer, H.; Oliver, M.A.; Gispert, M.; Dobrowoski, A.; Claus, R. Influence of differences in sensitivity of Spanish and German consumers to perceive androstenone on the acceptance of boar meat differing in skatole and androstenone concentrations. Meat Sci. 2000, 54, 297–304. [Google Scholar]
- Robic, A.; Larzul, C.; Bonneau, M. Genetic and metabolic aspects of androstenone and skatole deposition in pig adipose Tissue: A Review. Genet. Sel. Evol. 2008, 40, 129–143. [Google Scholar]
- Zamaratskaia, G.; Squires, E.J. Biochemical, nutritional and genetic effects on boar taint in entire male pigs. Animal 2009, 3, 1508–1521. [Google Scholar]
- Claus, R.; Weiler, U.; Herzog, A. Physiological aspects of androstenone and skatole formation in the boar—A review with experimental data. Meat Sci. 1994, 38, 289–305. [Google Scholar]
- Rasmussen, M.K.; Brsunius, C.; Zamaratskaia, G.; Ekstrand, B. Feeding dried chicory root to pigs decrease androstenone accumulation in fat by increasing hepatic 3β hydroxysteroid dehydrogenase expression. J. Steroid Biochem. Mol. Biol. 2012. [Google Scholar]
- Hansen, L.L.; Mejer, H.; Thamsborg, S.M.; Byrne, D.V.; Roepstorff, A.; Karlsson, A.H.; Hansen-Møller, J.; Jensen, M.T.; Tuomola, M. Influence of chicory roots (Cichorium Intybus L.) on boar taint in entire male and female pigs. Anim. Sci. 2006, 82, 359–368. [Google Scholar]
- Zammerini, D.; Wood, J.D.; Whittington, F.M.; Nute, G.R.; Hughes, S.I.; Hazzledine, M.; Matthews, K. Effect of dietary chicory on boar taint. Meat Sci. 2012. [Google Scholar]
- Jensen, B.B. Prevention of boar taint in pig production. Factors affecting the level of skatole. Acta Vet. Scand. 2006, 48, S6. [Google Scholar] [CrossRef]
- Prunier, A.; Bonneau, M. Alternatives to piglet castration. Prod. Anim. 2006, 19, 347–356. [Google Scholar]
- Deslandes, B.; Gariepy, C.; Houde, A. Review of microbiological and biochemical effects of skatole on animal production. Livest. Prod. Sci. 2001, 71, 193–200. [Google Scholar]
- Annor-Frempong, I.E.; Nute, G.R.; Whittington, F.W.; Wood, J.D. The problem of taint in pork. III. Odour profile of pork fat and the Interrelationships between androstenone, skatole and indole concentrations. Meat Sci. 1997, 47, 63–76. [Google Scholar] [CrossRef]
- Jensen, B.B.; Jensen, M.T. Microbial production of skatole in the digestive tract of entire male pigs. In Skatole and Boar Taint; Jensen, W.K., Ed.; Danish Meat Research Institute: Roskilde, Denmark, 1998; pp. 41–76. [Google Scholar]
- Cook, K.L.; Rothrock JR., M.J.; Loughrin, J.H.; Doerner, K.C. Characterization of skatole-producing microbial populations in enriched swine lagoon slurry. FEMS Microbiol. Ecol. 2007, 60, 329–340. [Google Scholar]
- Whithehead, T.R.; Price, N.P.; Drake, H.L.; Cotta, M.A. Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen clostridium drakei, clostridium scatologenes, and swine manure. Appl. Environ. Microbiol. 2008, 74, 1950–1953. [Google Scholar] [CrossRef]
- Jensen, M.T; Jensen, B.B. Determination of indole and 3-methylindole (skatole) in bacterial cultures, intestinal content and faeces. J. Chrom. B 1993, 665, 275–280. [Google Scholar]
- Yokoyama, M.T.; Johnson, K.A.; Carlson, J.R. Factors influencing the production of p-cresol and skatole by Lactobacillus isolated from the rumen and pig feces. In Proceedings of XVII Conference on Rumen Function, Chicag, IL, USA, 1–2 December 1983; 17, pp. 19–20.
- Doerner, K.C.; Cook, K.L.; Mason, B.P. 3-Methylindole production is regulated in clostridium scatologenes ATCC 25775. Lett. Appl. Microbiol. 2009, 48, 125–132. [Google Scholar] [CrossRef]
- Li, C.-Y.; Wu, C.; Liu, J.-X.; Wang, Y.-Z.; Wang, J.-K. Spatial variation of intestinal skatole production and microbial community in Jinhua and Landrace pigs. J. Sci. Food Agr. 2009, 89, 639–644. [Google Scholar]
- Li, C.-Y.; Liu, J.-X.; Wang, Y.-Z.; Wu, Y.-M.; Wang, J.-K.; Zhou, Y.-Y. Influence of differing carbohydrate sources on l-tryptophan metabolism by porcine fecal microbiota studied in vitro. Livest. Sci. 2009, 120, 43–50. [Google Scholar] [CrossRef]
- Jensen, B.B.; Jorgensen, H. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl. Environ. Microbiol. 1994, 60, 1897–1904. [Google Scholar]
- Claus, R.; Dehnhard, M.; Herzog, A.; Bernal-Barragan, H.; Giménez, T. Parallel measurements of indole and skatole (3-methylindole) in feces and blood plasma of pigs by HPLC. Livest. Prod. Sci. 1993, 34, 115–126. [Google Scholar]
- Knarreborg, A.; Beck, J.; Jensen, M.T.; Laue, A.; Agergaard, N.; Jensen, B.B. Effect of non-starch polysaccharides on production and absorption of indolic compounds in entire male pigs. Anim. Sci. 2002, 74, 445–453. [Google Scholar]
- Lösel, D.; Lacorn, M.; Büttner, D.; Claus, R. Flavor improvement in pork from barrows and gilts via inhibition of intestinal skatole formation with resistant potato starch. J. Agr. Food Chem. 2006, 54, 5990–5995. [Google Scholar]
- Lanthier, F.; Lou, Y.; Squires, E.J. Skatole metabolism in the intact pre-pubescent male pig: The relationship between hepatic enzyme activity and skatole concentrations in plasma and fat. Livest. Sci. 2007, 106, 145–153. [Google Scholar]
- Hawe, S.M.; Walker, N.; Moss, B.W. Effects of infusing skatole into the terminal ileum of growing male pigs. Livest. Prod. Sci. 1993, 33, 267–276. [Google Scholar]
- Agergaard, N.; Laue, A. Absorption of skatole to portal vein blood and liver turnover in entire male pigs using an in vivo animal model. In Skatole and Boar Taint; Jensen, W.K., Ed.; Danish Meat Research Institute: Roskilde, Denmark, 1998; pp. 77–96. [Google Scholar]
- Nocerini, M.R.; Honeyfield, D.C.; Carlson, J.R.; Breeze, R.G. Reduction of 3-methylindole production and prevention of acute bovine pulmonary edema and emphysema with lasalocid. J. Anim. Sci. 1985, 60, 232–238. [Google Scholar]
- Schreurs, N.M.; Tavendale, M.H.; Lane, G.A.; Barry, T.N.; Marotti, D.M.; McNabb, W.C. Postprandial indole and skatole formation in the rumen when feeding white clover, perennial ryegrass and lotus corniculatus. Proc. New Zealand Soc. Anim. Prod. 2003, 63, 14–17. [Google Scholar]
- Pedersen, J.K.; Mortensen, A.B.; Madsen, A.; Mortensen, H.P.; Hyldgaard-Jensen, J. Foderets indflydelse pa ornelugt i svinekod. Statens Hysdyrbrugsforsog. Meddelse 1986, 638, 1–7. [Google Scholar]
- Mortensen, H.P. Influence of Breed Energy and Protein in the Feed on Skatole Content in Female Pigs, Castrates and Entire Male Pigs; Manuscript No. 837E; Danish Meat Research Institute: Roskilde, Denmark, 1989. [Google Scholar]
- Bernal-Barragan, H. Physiologische und nutritive Einflüsse auf die Bildung von Skatol (3-Methylindol) im Dickdarm von Schweinen. Ph.D. Thesis, Universität Hohenheim, Stuttgart, Germany, 1992. [Google Scholar]
- Leong, J.; Morel, P.C.H.; Purchas, R.W.; Wilkinson, B.H.P. Effects of dietary components including garlic on concentrations of skatole and indole in subcutaneous fat of female pigs. Meat Sci. 2011, 88, 45–50. [Google Scholar]
- Claus, R.; Raab, S. Influences on skatole formation from tryptophan in the pig colon. Adv. Exp. Med. Biol. 2000, 467, 679–684. [Google Scholar]
- Raab, S.; Leiser, R.; Kemmer, H.; Claus, R. Effects of energy and purines in the diet on proliferation, differentiation, and apoptosis in the small intestine of the pig. Clin. Exp.Metabolism 1998, 47, 1105–1111. [Google Scholar] [CrossRef]
- Huang, C.W.; Lee, T.T.; Shih, Y.C.; Yu, B. Effects of dietary supplementation of Chinese medicinal herbs on polymorphonuclear neutrophil immune activity and small intestinal morphology in weanling pigs. J. Anim. Physiol. Anim. Nutr. 2011. [Google Scholar]
- Lanthier, F.; Lou, Y.; Terner, M.A.; Squires, E.J. Characterizing developmental changes in plasma and tissue skatole concentrations in the prepubescent intact male pig. J. Anim. Sci. 2006, 84, 1699–1708. [Google Scholar]
- Zamaratskaia, G. Factors involved in the development of boar taint Influence of breed, age, diet and raising conditions. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Swedish, 2004. [Google Scholar]
- Agergaard, N.; Laue, A. Absorption from the gastrointestinal tract and liver turnover of skatole. In Measurement and Prevention of Boar Taint in Entire Male Pigs; Bonneau, M., Ed.; Institut National de la Recherche Agronomique: Paris, France, 1993. [Google Scholar]
- Babol, J.; Squires, E.J.; Lundström, K. Hepatic metabolism of skatole in pigs by cytochrome P4502E1. J. Anim. Sci. 1998, 76, 822–828. [Google Scholar]
- Squires, E.J.; Lundström, K. Relationship between cytochrome P450IIE1 in liver and levels of skatole and its metabolites in intact male pigs. J. Anim. Sci. 1997, 75, 2506–2511. [Google Scholar]
- Doran, E.; Whittington, F.W.; Wood, J.D.; McGivan, J.D. Cytochrome P450IIE1 (CYP2E1) is induced by skatole and this induction is blocked by androstenone in isolated pig hepatocytes. Chem. Biol. Interact. 2002, 140, 81–92. [Google Scholar]
- Sinclair, P.A.; Squires, E.J. Testicular sulfoconjugation of the 16-androstene steroids by hydroxysteroid sulfotransferase: Its effect on the concentrations of 5α-androstenone in plasma and fat of the mature domestic boar. J. Anim. Sci. 2005, 83, 358–365. [Google Scholar]
- Wiercinska, P.; Lou, Y.; Squires, E.J. The roles of different porcine cytochrome P450 enzymes and cytochrome b5A in skatole metabolism. Animal 2011. [Google Scholar]
- Brunius, C.; Rasmussen, M.K.; Lacoutiére, H.; Andersson, K.; Ekstrand, B.; Zamaratskaia, G. Expression and activities of hepatic cytochrome P450 (CYP1A, CYP2A and CYP2E1) in entire and castrated male pigs. Animal 2012, 6, 271–277. [Google Scholar]
- Zamaratskaia, G.; Zlabek, V.; Ropstad, E.; Andresen, Ø. In vitro and in vivo association of porcine hepatic cytochrome P450 3A and 2C activities with testicular steroids. Reprod. Dom. Anim. 2012. [Google Scholar]
- Rasmussen, M.K.; Zamaratskaia, G.; Ekstrand, B. In vivo effect of dried chicory root (Cichorium intybus L.) on xenobiotica metabolising cytochrome P450 enzymes in porcine liver. Toxicol. Lett. 2011, 200, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, M.K.; Zamaratskaia, G.; Ekstrand, B. Gender-related differences in cytochrome P450 in porcine liver—Implication for activity, expression and inhibition by testicular steroids. Reprod. Dom. Anim. 2011, 46, 616–623. [Google Scholar]
- Terner, M.A.; Gilmore, W.J.; Lou, Y.; Squires, E.J. The role of CYP2A and CYP2E1 in the metabolism of 3-methylindole in primary cultured porcine hepatocytes. Drug Metab. Dispos. 2006, 34, 848–854. [Google Scholar]
- Diaz, G.J.; Squires, E.J. Phase II in vitro metabolism of 3-methylindole metabolites in porcine liver. Xenobiotica 2003, 33, 485–498. [Google Scholar] [CrossRef]
- Diaz, G.J.; Skordos, K.W.; Yost, G.S.; Squires, E.J. Identification of phase I metabolites of 3-methylindole produced by pig liver microsomes. Drug Metab. Dispos. 1999, 27, 1150–1156. [Google Scholar]
- Baek, C.; Hansen-Moller, J.; Friis, C.; Cornett, C.; Hansen, S.H. Identification of selected metabolites of skatole in plasma and urine from pigs. J. Agric. Food Chem. 1997, 45, 2332–2340. [Google Scholar]
- Sinclair, P.A.; Hancock, S.; Gilmore, W.J.; Squires, E.J. Metabolism of the 16-androstene steroids in primary cultured porcine hepatocytes. J. Steroid Biochem. Mol. Biol. 2005, 96, 79–87. [Google Scholar]
- Zamaratskaia, G.; Rasmussen, M.K.; Herbin, I.; Ekstrand, B.; Zlabek, V. In vitro inhibition of porcine cytochrome P450 by 17β-estradiol and 17α-estradiol. Interdis.Toxicol. 2011, 4, 78–84. [Google Scholar] [CrossRef]
- Zamaratskaia, G.; Zlabek, V.; Chen, G.; Madej, A. Modulation of porcine cytochrome P450 enzyme activities by surgical castration and immunocastration. Animal 2009, 3, 1124–1132. [Google Scholar]
- Prusa, K.; Nederveld, H.; Runnels, P.L.; Li, R.; King, V.L.; Crane, J.P. Prevalence and relationships of sensory taint, 5α-androstenone and skatole in fat and lean tissue from the loin (Longissimus dorsi) of barrows, gilts, sows, and boars from selected abattoirs in the United States. Meat Sci. 2011, 88, 96–101. [Google Scholar] [CrossRef]
- Gillam, E.M.J.; Notley, L.M.; Cai, H.; De Voss, J.J.; Guengerich, F.P. Oxidation of indole by cytochrome P450 enzymes. Biochemistry 2000, 39, 13817–13824. [Google Scholar]
- Chilliard, Y. Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: A review. J. Dairy Sci. 1993, 76, 3897–3931. [Google Scholar] [CrossRef]
- Lo Fiego, D.P.; Santoro, P.; Macchioni, P.; De Leonibus, E. Influence of genetic type, live weight at slaughter and carcass fatness on fatty acid composition of subcutaneous adipose tissue of raw ham in the heavy pig. Meat Sci. 2005, 69, 107–114. [Google Scholar]
- Metz, S.H.M.; Dekker, R.A. The contribution of fat mobilization to the regulation of fat deposition in growing Large White and Pietrain pigs. Animal Prod. 1981, 33, 149–157. [Google Scholar] [CrossRef]
- Scott, R.A.; Cornelius, S.G.; Mersmann, H.J. Fatty acid composition of adipose tissue from lean and obese swine. J. Anim. Sci. 1981, 53, 977–981. [Google Scholar]
- Aluwé, M.; Millet, S.; Bekaert, K.M.; Tuyttens, F.A.M.; Vanhaecke, L.; De Smet, S.; De Brabander, D.L. Influence of breed and slaughter weight on boar taint prevalence in entire male pigs. Animal 2011, 5, 1283–1289. [Google Scholar]
- Monziols, M.; Bonneau, M.; Davenel, A.; Kouba, M. Comparison of the lipid content and fatty acid composition of intermuscular and subcutaneous adipose tissues in pig carcasses. Meat Sci. 2007, 76, 54–60. [Google Scholar]
- Weiler, U.; Dehnhard, M.; Herbert, E.; Claus, R. Einfluss von Geschlecht, Genotyp und Mastendgewicht auf die Androstenon-und Skatolkonzentrationen im Fett von Mastschweinen. Schriftenreihe BML, Reihe A 1995, 449, 14–32. [Google Scholar]
- Lösel, D. Versuche zur Verbesserung der sensorischen Fleischqualität beim Schwein durch nutritive Skatolhemmung. Ph.D. Thesis, Universität Hohenheim, Stuttgart, Germany, 2006. [Google Scholar]
- Hansen, L.L.; Mikkelsen, L.L.; Agerhem, H.; Laue, A.; Jensen, M.T.; Jensen, B.B. Effect of fermented liquid food and zinc bacitracin on microbial metabolism in the gut and sensoric profile of m. longissimus dorsi from entire male and female pigs. Anim. Sci. 2000, 71, 65–80. [Google Scholar]
- Andersson, K.; Schaub, A.; Andersson, K.; Lundström, K.; Thomke, S.; Hansson, I. The effects of feeding system, lysine level and gilt contact on performance, skatole levels and economy of entire male pigs. Livest. Prod. Sci. 1997, 51, 131–140. [Google Scholar] [CrossRef]
- Weiler, U.; Götz, M.; Schmidt, A.; Otto, M.; Müller, S. Influences of sex and immunocastration on feed intake behavior, skatole and indole formation in pigs. 2012; Unpublished work. [Google Scholar]
- Claus, R.; Lösel, D.; Lacorn, M.; Mentschel, J.; Schenkel, H. Effects of butyrate on apoptosis in the pig colon and its consequences for skatole formation and tissue accumulation. J. Anim. Sci. 2003, 81, 239–248. [Google Scholar]
- Lösel, D.; Claus, R. Dose-dependent effects of resistant potato starch in the diet on intestinal skatole formation and adipose tissue accumulation in the pig. J. Vet. Med. A 2005, 52, 209–212. [Google Scholar]
- verland, M.; Kjos, N.P.; Borg, M.; Sørum, H. Organic acids in diets for entire male pigs. Livest. Sci. 2007, 109, 170–173. [Google Scholar]
- verland, M.; Kjos, N.P.; Borg, M.; Skjerve, E.; Sørum, H. Organic acids in diets for entire male pigs: Effect on skatole level, microbiota in digesta, and growth performance. Livest. Sci. 2008, 115, 169–178. [Google Scholar] [CrossRef]
- Hansen, L.L.; Larsen, A.E.; Jensen, B.B.; Hansen-Møller, J. Short time effect of zinc bacitracin and heavy fouling with faeces plus urine on boar taint. Anim. Sci. 1997, 64, 351–363. [Google Scholar]
- Hansen, L.L.; Larsen, A.E. Effect of antibiotic feed additives on the level of skatole in fat of male pigs. Livest. Prod. Sci. 1994, 39, 269–274. [Google Scholar]
- Blank, R.; Müller-Siegwardt, B.; Wolffram, S. Sanguinarine does not influence availability or metabolism of tryptophan in pigs. Livest. Sci. 2010, 134, 24–26. [Google Scholar]
- Michiels, J.; Missotten, J.A.M.; Fremaut, D.; De Smet, S.; Dierick, N.A. In vitro characterisation of the antimicrobial activity of selected essential oil components and binary combinations against the pig gut flora. Anim. Feed Sci. Technol. 2009, 151, 111–127. [Google Scholar] [CrossRef]
- Tavendale, M.H.; Lane, G.A.; Schreurs, N.M.; Fraser, K.; Meagher, L.P. The effects of condensed tannins from Dorycnium rectum on skatole and indole ruminal biogenesis for grazing sheep. Aust. J. Agr. Res. 2005, 56, 1331–1337. [Google Scholar] [CrossRef]
- Roy, N.C.; Fraser, K.; Lane, G.A.; Sinclair, B.R.; McNabb, W.C. Polyethylene glycol increases intestinal absorption and hepatic uptake of indole and skatole in sheep fed sulla. J. Anim. Feed Sci. 2002, 13, 339–342. [Google Scholar]
- Newton, S.M.; Lau, C.; Gurcha, S.S.; Besra, G.S.; Wright, C.W. he evaluation of forty-three plant species for in vitro antimycobacterial activities; Isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. J. Ethnopharmacol. 2002, 79, 57–67. [Google Scholar] [CrossRef]
- Ehrlinger, M. Phytogene Zusatzstoffe in der Tierernährung. Ph.D. Thesis, Ludwig-Maximilians-Universität, München, Germany, 2007. [Google Scholar]
- Xu, X.; Hu, C.; Wang, M. Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria. J. Gen. Appl. Microbiol. 2002, 48, 83–89. [Google Scholar]
- Pauly, C.; Spring, P.; Gahan, D.; Odoherty, J.V. The effect of cereal type and enzyme supplementation on carcass characteristics, volatile fatty acids and intestinal microflora and boar taint in entire male pigs. Animal 2011, 5, 378–386. [Google Scholar]
- Øverland, M.; Kjos, N.K.; Fauske, A.K.; Teige, J.; Sørum, H. Easily fermentable carbohydrates reduce skatole formation in the distal intestine of entire male pigs. Livest. Sci. 2011, 40, 206–217. [Google Scholar]
- Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Pluske, J.R. Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed Sci. Tech. 2011. [Google Scholar]
- Zamaratskaia, G.; Chen, G.; Lundström, K. Effects of sex, weight, diet and hCG administration on levels of skatole and indole in the liver and hepatic activities of cytochromes P4502E1 and P4502A6 in pigs. Meat Sci. 2006, 72, 331–338. [Google Scholar] [CrossRef]
- Aluwé, M.; Millet, S.; Nijs, G.; Tuyttens, F.A.M.; Verheyden, K.; De Brabander, H.F.; De Brabander, D.L.; Van Oeckel, M.J. Absence of an effect of dietary fibre or clinoptilolite on boar taint in entire male pigs fed practical diets. Meat Sci. 2009, 82, 346–352. [Google Scholar]
- Sun, T.; Lærke, H.N.; Jørgensen, H.; Bach Knudsen, K.E. The effect of extrusion cooking of different starch sources on the in vitro and in vivo digestibility in growing pigs. Anim. Feed Sci. Tech. 2006, 131, 67–86. [Google Scholar] [CrossRef]
- Kjos, N.P.; Øverland, M.; Fauske, A.K.; Sørum, H. Feeding chicory inulin to entire male pigs during the last period before slaughter reduces skatole in digesta and backfat. Livest. Sci. 2010, 134, 143–145. [Google Scholar] [CrossRef]
- Hansen, L.L.; Stolzenbach, S.; Jensen, J.A.; Henckel, P.; Hansen-Moller, J.; Syriopoulos, K.; Byrne, D.V. Effect of feeding fermentable fibre-rich feedstuffs on meat quality with emphasis on chemical and sensory boar taint in entire male and female pigs. Meat Sci. 2008, 80, 1165–1173. [Google Scholar]
- Vhile, S.G.; Kjos, N.P.; Sørum, H.; Øverland, M. Feeding Jerusalem artichoke reduced skatole level and changed intestinal microbiota in the gut of entire male pigs. Animal 2011. [Google Scholar]
- Van Oeckel, M.J.; Warnants, N.; De Paepe, M.; Casteels, M.; Boucqué, C.V. Effect of fibre-rich diets on the backfat skatole content of entire male pigs. Livest. Prod. Sci. 1998, 56, 173–180. [Google Scholar]
- Whittington, F.M.; Nute, G.R.; Hughes, S.I.; McGivan, J.D.; Lean, I.J.; Wood, J.D.; Doran, E. Relationships between skatole and androstenone accumulation, and cytochrome P4502E1 expression in Meishan × Large White Pigs. Meat Sci. 2004, 67, 569–576. [Google Scholar]
- Konstantinov, S.R.; Zhu, W.-Y.; Williams, B.A.; Tamminga, S.; De Vos, W.M.; Akkermans, A.D.L. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol. Ecol. 2003, 43, 225–235. [Google Scholar]
- Gibson, P.R.; Newnham, E.; Barrett, J.S.; Shepherd, S.J.; Muir, J.G. Review article: Fructose malabsorption and the bigger picture. Aliment. Pharma. Ther. 2007, 25, 349–363. [Google Scholar]
- Baltic, M.; Raicevic, S.; Tadic, I.; Drljacic, A. Influence of zeolite on skatole content of swine fat tissue. In Boar Taint in Entire Male Pigs; Bonneau, M., Lundström, K., Malmors, B., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 1997; pp. 97–99. [Google Scholar]
- Jen, K.; Squires, E.J. In vitro assessment of the effectiveness of non-nutritive sorbent materials as binding agents for boar taint compounds. Animal 2011, 5, 1821–1828. [Google Scholar] [CrossRef]
- Yang, C.S.; Chabra, S.K.; Hong, J.Y.; Smith, T.J. Mechanisms of inhibition of chemical toxicity and carcinogenesis by diallyl sulphide and related compounds from garlic. J. Nutr. 2001, 131, 1041S–1045S. [Google Scholar]
- Kouba, M.; Enser, M.; Whittington, F.M.; Nute, G.R.; Wood, J.D. Effect of a high-linolenic acid diet on lipogenic enzyme activities, fatty acid composition, and meat quality in the growing pig. J. Anim. Sci. 2003, 81, 1967–1979. [Google Scholar]
- Jeong, H.G.; Yun, C.-H. Induction of rat hepatic cytochrome P450 enzymes by myristicin. Biochem. Biophys. Res. Commun. 1995, 217, 966–971. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wesoly, R.; Weiler, U. Nutritional Influences on Skatole Formation and Skatole Metabolism in the Pig. Animals 2012, 2, 221-242. https://doi.org/10.3390/ani2020221
Wesoly R, Weiler U. Nutritional Influences on Skatole Formation and Skatole Metabolism in the Pig. Animals. 2012; 2(2):221-242. https://doi.org/10.3390/ani2020221
Chicago/Turabian StyleWesoly, Raffael, and Ulrike Weiler. 2012. "Nutritional Influences on Skatole Formation and Skatole Metabolism in the Pig" Animals 2, no. 2: 221-242. https://doi.org/10.3390/ani2020221