Exploring Evolutionary Adaptations and Genomic Advancements to Improve Heat Tolerance in Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Evolutionary Background
2.1. Evolutionary Origin and Domestication of Chicken Breeds
2.2. Natural Selection and Environmental Adaptations
2.3. Impact of Human Interventions or Artificial Selection
2.4. Comparative Evolutionary Studies
3. Genomic Studies for Enhancing Heat Tolerance in Chickens
3.1. Genome-Wide Association Study (GWAS) and Quantitative Trait Loci (QTL) Mapping
3.2. Genomic Selection and Its Application
4. Functional Genes and Candidate Pathways Involved in Heat Tolerance
4.1. Heat Shock Proteins (HSPs)
4.2. Genes Associated with Metabolism and Vascular Function
4.3. Genes Linked to Energy Metabolism and Immune Response
4.4. Antioxidant Defense Pathway
4.5. Unfolded Protein Response (UPR) Pathway
4.6. Autophagy Pathway
4.7. NF-κB Signaling Pathway
4.8. Mitochondrial Function Pathway
5. Conclusions
Declaration of Generative AI and AI-Assisted Technologies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elbeltagy, A.R.; Bertolini, F.; Fleming, D.S.; Van Goor, A.; Ashwell, C.M.; Schmidt, C.J.; Kugonza, D.R.; Lamont, S.J.; Rothschild, M.F. Natural Selection Footprints among African Chicken Breeds and Village Ecotypes. Front. Genet. 2019, 10, 376. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Shao, D.; Yang, L.; Liang, Q.; Han, W.; Xue, Q.; Qu, L.L.; Leng, L.; Li, Y.Y.; Zhao, X.X.; et al. Genome-wide scan for selection signatures and genes related to heat tolerance in domestic chickens in the tropical and temperate regions in Asia. Genomics 2021, 101, 101821. [Google Scholar] [CrossRef]
- Rachman, M.P.; Bamidele, O.; Dessie, T.; Smith, J.; Hanotte, O.; Gheyas, A.A. Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Sci. Rep. 2024, 14, 2209. [Google Scholar] [CrossRef] [PubMed]
- Lawal, R.A.; Martin, S.H.; Vanmechelen, K.; Vereijken, A.; Silva, P.; Al-Atiyat, R.M.; Aljumaah, R.S.; Mwacharo, J.M.; Wu, D.-D.; Zhang, Y.-P.; et al. The wild species genome ancestry of domestic chickens. BMC Biol. 2020, 18, 13. [Google Scholar] [CrossRef]
- Ma, Y.; Gu, L.; Yang, L.; Sun, C.; Xie, S.; Fang, C.; Gong, Y.; Li, S. Identifying artificial selection signals in the chicken genome. PLoS ONE 2018, 13, e0196215. [Google Scholar] [CrossRef]
- Wang, Y.; Saelao, P.; Chanthavixay, G.; Gallardo, R.A.; Wolc, A.; Fulton, J.E.; Dekkers, J.M.; Lamont, S.J.; Kelly, T.R.; Zhou, H. Genomic Regions and Candidate Genes Affecting Response to Heat Stress with Newcastle Virus Infection in Commercial Layer Chicks Using Chicken 600K Single Nucleotide Polymorphism Array. Int. J. Mol. Sci. 2024, 25, 2640. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.H.; Zhang, L. Oxidative stress in broiler chicken and its consequences on meat quality. Int. J. Life Sci. Res. Arch. 2021, 1, 045–054. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Teyssier, J.R.; Cozannet, P.; Greene, E.; Dridi, S.; Rochell, S.J. Influence of different heat stress models on nutrient digestibility and markers of stress, inflammation, lipid, and protein metabolism in broilers. Poult. Sci. 2023, 102, 103048. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Lara, L.; Rostagno, M. Impact of Heat Stress on Poultry Production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Y.; Forcina, G.; Low, G.W.; Sadanandan, K.R.; Gwee, C.Y.; van Grouw, H.; Wu, S.; Edwards, S.V.; Baldwin, M.W.; Rheindt, F.E. Historic samples reveal loss of wild genotype through domestic chicken introgression during the Anthropocene. PLOS Genet. 2023, 19, e1010551. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.S.; Thakur, M.; Peng, M.S.; Jiang, Y.; Frantz, L.A.F.; Li, M.; Zhang, J.J.; Wang, S.; Peters, J.; Otecko, N.O.; et al. 863 Genomes Reveal the Origin and Domestication of Chicken. Cell Res. 2020, 30, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Juiputta, J.; Chankitisakul, V.; Boonkum, W. Appropriate Genetic Approaches for Heat Tolerance and Maintaining Good Productivity in Tropical Poultry Production: A Review. Vet. Sci. 2023, 10, 591. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.; Nunome, M.; Suwanasopee, T.; Duengkae, P.; Chaiwatana, S.; Chamchumroon, W.; Suzuki, T.; Koonawootrittriron, S.; Matsuda, Y.; Srikulnath, K. Origin and evolutionary history of domestic chickens inferred from a large population study of Thai red junglefowl and indigenous chickens. Sci. Rep. 2021, 11, 2035. [Google Scholar] [CrossRef] [PubMed]
- Lawal, R.A.; Al-Atiyat, R.M.; Aljumaah, R.S.; Silva, P.; Mwacharo, J.M.; Hanotte, O. Whole-Genome Resequencing of Red Junglefowl and Indigenous Village Chicken Reveal New Insights on the Genome Dynamics of the Species. Front. Genet. 2018, 9, 264. [Google Scholar] [CrossRef] [PubMed]
- Sawai, H.; Kim, H.L.; Kuno, K.; Suzuki, S.; Gotoh, H.; Takada, M.; Takahata, N.; Satta, Y.; Akishinonomiya, F. The origin and genetic variation of domestic chickens with special reference to junglefowls Gallus g. gallus and G. varius. PLoS ONE 2010, 5, e10639. [Google Scholar] [CrossRef] [PubMed]
- Fumihito, A.; Miyake, T.; Sumi, S.; Takada, M.; Ohno, S.; Kondo, N. One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc. Natl. Acad. Sci. USA 1994, 91, 12505–12509. [Google Scholar] [CrossRef]
- Shi, S.; Shao, D.; Yang, L.; Liang, Q.; Han, W.; Xue, Q.; Qu, L.; Leng, L.; Li, Y.; Zhao, X.; et al. Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments. J. Adv. Res. 2023, 47, 13–25. [Google Scholar] [CrossRef]
- Asadollahpour Nanaei, H.; Kharrati-Koopaee, H.; Esmailizadeh, A.; Asadollahi, H.; Torshizi, R.V.; Ehsani, A.; Masoudi, A.A.; Walugembe, M.; Bertolini, F.; Dematawewa, C.M.B.; et al. Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens. J. Adv. Res. 2019, 23, 13–25. [Google Scholar] [CrossRef]
- Zhao, X.; Wen, J.; Zhang, X.; Zhang, J.; Zhu, T.; Wang, H.; Yang, W.; Cao, G.; Xiong, W.; Liu, Y.; et al. Significant genomic introgression from grey junglefowl (Gallus sonneratii) to domestic chickens (Gallus gallus domesticus). J. Anim. Sci. Biotechnol. 2024, 15, 45. [Google Scholar] [CrossRef]
- Lawal, R.A.; Hanotte, O. Domestic chicken diversity: Origin, distribution, and adaptation. Anim. Genet. 2021, 52, 385–394. [Google Scholar] [CrossRef]
- Boonkum, W.; Duangjinda, M.; Kananit, S.; Chankitisakul, V.; Kenchaiwong, W. Genetic Effect and Growth Curve Parameter Estimation under Heat Stress in Slow-Growing Thai Native Chickens. Vet. Sci. 2021, 8, 297. [Google Scholar] [CrossRef]
- Xu, N.-Y.; Liu, Z.-Y.; Yang, Q.-M.; Bian, P.-P.; Li, M.; Zhao, X. Genomic Analyses for Selective Signatures and Genes Involved in Hot Adaptation among Indigenous Chickens from Different Tropical Climate Regions. Front. Genet. 2022, 13, 906447. [Google Scholar] [CrossRef]
- Dana, N.; vander Waaij, E.H.; van Arendonk, J.A.M. Genetic and phenotypic parameter estimates for body weights and egg production in Horro chicken of Ethiopia. Trop. Anim. Health Prod. 2011, 43, 21–28. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Elnaggar, A.S. Productive, physiological and immunological responses of two broiler strains fed different dietary regimens and exposed to heat stress. Ital. J. Anim. Sci. 2018, 17, 686–697. [Google Scholar] [CrossRef]
- Desta, T.T.; Dessie, T.; Bettridge, J.; Lynch, S.E.; Melese, K.; Collins, M.; Christley, R.M.; Wigley, P.; Kaiser, P.; Terfa, Z.; et al. Signature of artificial selection and ecological landscape on morphological structures of Ethiopian village chickens. Anim. Genet. Resour./Resour. Génét Anim./Recur. Genét. Anim. 2013, 52, 17–29. [Google Scholar] [CrossRef]
- Wang, Y.; Saelao, P.; Chanthavixay, K.; Gallardo, R.; Bunn, D.; Lamont, S.J.; Dekkers, J.M.; Kelly, T.; Zhou, H. Physiological responses to heat stress in two genetically distinct chicken inbred lines. Poult. Sci. 2018, 97, 770–780. [Google Scholar] [CrossRef]
- Chen, B.; Li, D.; Ran, B.; Zhang, P.; Wang, T. Key miRNAs and Genes in the High-Altitude Adaptation of Tibetan Chickens. Front. Vet. Sci. 2022, 9, 911685. [Google Scholar] [CrossRef]
- Zhang, Y.; Gou, W.; Zhang, Y.; Zhang, H.; Wu, C. Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 31, 100602. [Google Scholar] [CrossRef]
- Kpomasse, C.C.; Kouame, Y.A.E.; N’nanle, O.; Houndonougbo, F.M.; Tona, K.; Oke, O.E. The productivity and resilience of the indigenous chickens in the tropical environments: Improvement and future perspectives. J. Appl. Anim. Res. 2023, 51, 456–469. [Google Scholar] [CrossRef]
- Bennett, C.E.; Thomas, R.; Williams, M.; Zalasiewicz, J.; Edgeworth, M.; Miller, H.; Coles, B.; Foster, A.; Burton, E.J.; Marume, U. The broiler chicken as a signal of a human reconfigured biosphere. R. Soc. Open Sci. 2018, 5, 180325. [Google Scholar] [CrossRef]
- Nawaz, A.H.; Lin, S.; Wang, F.; Zheng, J.; Sun, J.; Zhang, W.; Jiao, Z.; Zhu, Z.; An, L.; Zhang, L. Investigating the heat tolerance and production performance in local chicken breed having normal and dwarf size. Animal 2023, 17, 100707. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, C.; Li, X.; Ning, Z.; Chen, Y.; Jia, Y.; Han, J.; Wang, L.; Lv, X.; Yang, W.; et al. Genome-Wide Population Genetic Analysis of Commercial, Indigenous, Game, and Wild Chickens Using 600K SNP Microarray Data. Front. Genet. 2020, 11, 543294. [Google Scholar] [CrossRef]
- Malomane, D.K.; Weigend, S.; Schmitt, A.O.; Weigend, A.; Reimer, C.; Simianer, H. Genetic diversity in global chicken breeds in relation to their genetic distances to wild populations. Genet. Sel. Evol. 2021, 53, 36. [Google Scholar] [CrossRef]
- Muir, W.M.; Wong, G.K.-S.; Zhang, Y.; Wang, J.; Groenen, M.A.M.; Crooijmans, R.P.M.A.; Megens, H.-J.; Zhang, H.; Okimoto, R.; Vereijken, A.; et al. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc. Natl. Acad. Sci. USA 2008, 105, 17312–17317. [Google Scholar] [CrossRef]
- Restoux, G.; Rognon, X.; Vieaud, A.; Guemene, D.; Petitjean, F.; Rouger, R.; Brard-Fudulea, S.; Lubac-Paye, S.; Chiron, G.; Tixier-Boichard, M. Managing genetic diversity in breeding programs of small populations: The case of French local chicken breeds. Genet. Sel. Evol. 2022, 54, 56. [Google Scholar] [CrossRef]
- Onagbesan, O.M.; Uyanga, V.A.; Oso, O.; Tona, K.; Oke, O.E. Alleviating heat stress effects in poultry: Updates on methods and mechanisms of actions. Front. Vet. Sci. 2023, 10, 1255520. [Google Scholar] [CrossRef]
- Pietrzak, E.; Dunislawska, A.; Siwek, M.; Zampiga, M.; Sirri, F.; Meluzzi, A.; Tavaniello, S.; Maiorano, G.; Slawinska, A. Splenic Gene Expression Signatures in Slow-Growing Chickens Stimulated in Ovo with Galactooligosaccharides and Challenged with Heat. Animals 2020, 10, 474. [Google Scholar] [CrossRef]
- Lin, H.; Jiao, H.C.; Buyse, J.; Decuypere, E. Strategies for preventing heat stress in poultry. Worlds. Poult. Sci. J. 2006, 62, 71–86. [Google Scholar] [CrossRef]
- Nawab, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W.; Zhao, Y.; Nawab, Y.; Li, K.; Xiao, M.; et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef]
- Nawaz, A.H.; Jiao, Z.; Zhang, L.; Wang, F.; Zhang, W.; Zheng, J.; Sun, J.; Zhu, Z.; Lin, S. Novel insights into heat tolerance: The impact of dwarf and frizzled feather traits on crossbreed chicken performance under thermal stress. Ital. J. Anim. Sci. 2024, 23, 320–330. [Google Scholar] [CrossRef]
- Gu, J.; Liang, Q.; Liu, C.; Li, S. Genomic Analyses Reveal Adaptation to Hot Arid and Harsh Environments in Native Chickens of China. Front. Genet. 2020, 11, 582355. [Google Scholar] [CrossRef]
- Galal, A.; Radwan, L.M.; Rezik, H.H.; Ayoub, H. Expression levels of HSP70 and CPT-1 in three local breeds of chickens reared under normal or heat stress conditions after the introduction of the naked neck gene. J. Therm. Biol. 2019, 80, 113–118. [Google Scholar] [CrossRef]
- Duangjinda, M.; Tunim, S.; Duangdaen, C.; Boonkum, W. Hsp70 Genotypes and Heat Tolerance of Commercial and Native Chickens Reared in Hot and Humid Conditions. Rev. Bras. Ciência Avícola 2017, 19, 7–18. [Google Scholar] [CrossRef]
- Tian, S.; Zhou, X.; Phuntsok, T.; Zhao, N.; Zhang, D.; Ning, C.; Li, D.; Zhao, H. Genomic Analyses Reveal Genetic Adaptations to Tropical Climates in Chickens. iScience 2020, 23, 101644. [Google Scholar] [CrossRef]
- Walugembe, M.; Bertolini, F.; Dematawewa, C.M.B.; Reis, M.P.; Elbeltagy, A.R.; Schmidt, C.J.; Lamont, S.J.; Rothschild, M.F. Detection of Selection Signatures among Brazilian, Sri Lankan, and Egyptian Chicken Populations under Different Environmental Conditions. Front. Genet. 2019, 9, 737. [Google Scholar] [CrossRef]
- Asadollahi, H.; Bagheri, M. Approaches using genome-wide association studies and heat stress resistance related genes in chicken—A review. Anim. Sci. Pap. Rep. 2024, 42, 35–50. [Google Scholar] [CrossRef]
- Saelao, P.; Wang, Y.; Chanthavixay, G.; Gallardo, R.; Wolc, A.; Dekkers, J.; Lamont, S.; Kelly, T.; Zhou, H. Genetics and Genomic Regions Affecting Response to Newcastle Disease Virus Infection under Heat Stress in Layer Chickens. Genes 2019, 10, 61. [Google Scholar] [CrossRef]
- Van Goor, A.; Bolek, K.J.; Ashwell, C.M.; Persia, M.E.; Rothschild, M.F.; Schmidt, C.J.; Lamont, S.J. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress. Genet. Sel. Evol. 2015, 47, 96. [Google Scholar] [CrossRef]
- Wolc, A.; Arango, J.; Settar, P.; Fulton, J.E.; O’Sullivan, N.P.; Dekkers, J.C.M. Genome wide association study for heat stress induced mortality in a white egg layer line. Poult. Sci. 2019, 98, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.X.; Chen, S.E.; Chen, C.F.; Lin, E.C.; Huang, S.Y. Genomic regions and pathways associated with thermotolerance in layer-type strain Taiwan indigenous chickens. J. Therm. Biol. 2020, 88, 102486. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, A.-C.; Fallahshahroudi, A.; Johnsen, H.; Hagenblad, J.; Wright, D.; Andersson, L.; Jensen, P. A domestication related mutation in the thyroid stimulating hormone receptor gene (TSHR) modulates photoperiodic response and reproduction in chickens. Gen. Comp. Endocrinol. 2016, 228, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Wells, K.L.; Hadad, Y.; Ben-Avraham, D.; Hillel, J.; Cahaner, A.; Headon, D.J. Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the scaleless line of featherless chickens. BMC Genom. 2012, 13, 257. [Google Scholar] [CrossRef] [PubMed]
- Rowland, K.; Ashwell, C.M.; Persia, M.E.; Rothschild, M.F.; Schmidt, C.; Lamont, S.J. Genetic analysis of production, physiological, and egg quality traits in heat-challenged commercial white egg-laying hens using 600k SNP array data. Genet. Sel. Evol. 2019, 51, 31. [Google Scholar] [CrossRef] [PubMed]
- Asadollahi, H.; Vaez Torshizi, R.; Ehsani, A.; Masoudi, A.A. An association of CEP78, MEF2C, VPS13A and ARRDC3 genes with survivability to heat stress in an F 2 chicken population. J. Anim. Breed. Genet. 2022, 139, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.X.; Chen, S.E.; Chen, C.F.; Lin, E.C.; Huang, S.Y. Genome-wide association study on the body temperature changes of a broiler-type strain Taiwan country chickens under acute heat stress. J. Therm. Biol. 2019, 82, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, K.N.; Ramiah, S.K.; Zulkifli, I. Heat Shock Protein Response to Stress in Poultry: A Review. Animals 2023, 13, 317. [Google Scholar] [CrossRef] [PubMed]
- Abayomi Jude Agbana; Adebayo Omowaye Ete; Roseline Ruth Fanwo; Emmanuel Umakwu Simon; Babatunde Aderemi Yusuf In silico genomic analysis of heat shock protein 70 in poultry under tropical conditions. GSC Biol. Pharm. Sci. 2024, 26, 037–042. [CrossRef]
- Liu, J.; Peng, W.; Yu, F.; Shen, Y.; Yu, W.; Lu, Y.; Lin, W.; Zhou, M.; Huang, Z.; Luo, X.; et al. Genomic selection applications can improve the environmental performance of aquatics: A case study on the heat tolerance of abalone. Evol. Appl. 2022, 15, 992–1001. [Google Scholar] [CrossRef]
- Sun, C.-F.; Zhang, X.-H.; Dong, J.-J.; You, X.-X.; Tian, Y.-Y.; Gao, F.-Y.; Zhang, H.-T.; Shi, Q.; Ye, X. Whole-genome resequencing reveals recent signatures of selection in five populations of largemouth bass (Micropterus salmoides). Zool. Res. 2023, 44, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Habimana, V.; Ekine-Dzivenu, C.C.; Nguluma, A.S.; Nziku, Z.C.; Morota, G.; Chenyambuga, S.W.; Mrode, R. Genes and models for estimating genetic parameters for heat tolerance in dairy cattle. Front. Genet. 2023, 14, 1127175. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Ma, C.; Wei, P.; Fang, Q.; Guo, X.; Zhou, B.; Jiang, R. Dynamic expression of HSP90B1 mRNA in the hypothalamus of two Chinese chicken breeds under heat stress and association analysis with a SNP in Huainan chickens. Czech J. Anim. Sci. 2017, 62, 82–87. [Google Scholar] [CrossRef]
- Kranis, A.; Gheyas, A.A.; Boschiero, C.; Turner, F.; Yu, L.; Smith, S.; Talbot, R.; Pirani, A.; Brew, F.; Kaiser, P.; et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genom. 2013, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ding, X.; Liu, J.; Zhang, Q.; de Koning, D.-J. Accuracy of genomic prediction using low-density marker panels. J. Dairy Sci. 2011, 94, 3642–3650. [Google Scholar] [CrossRef] [PubMed]
- OGDEN, R. Unlocking the potential of genomic technologies for wildlife forensics. Mol. Ecol. Resour. 2011, 11, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, A.; Previtali, C.; Cenadelli, S.; Gandini, L.; Galli, A.; Bongioni, G. Genetic traceability of cattle using an OpenArray genotyping platform. Anim. Genet. 2016, 47, 133–134. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.B.; Tang, Y.-W. Basic Concepts of Microarrays and Potential Applications in Clinical Microbiology. Clin. Microbiol. Rev. 2009, 22, 611–633. [Google Scholar] [CrossRef] [PubMed]
- Lamas, A.; Franco, C.M.; Regal, P.; Miranda, J.M.; Vázquez, B.; Cepeda, A. High-Throughput Platforms in Real-Time PCR and Applications. In Polymerase Chain Reaction for Biomedical Applications; InTech: Rijeka, Croatia, 2016. [Google Scholar]
- Kim, I.-J.; Kang, H.C.; Park, J.-G. M icroarray A pplications in C ancer Research. Cancer Res. Treat. Res. Treat. 2004, 3636, 207–213. [Google Scholar] [CrossRef]
- Rosati, A.; Graziano, V.; De Laurenzi, V.; Pascale, M.; Turco, M.C. BAG3: A multifaceted protein that regulates major cell pathways. Cell Death Dis. 2011, 2, e141. [Google Scholar] [CrossRef]
- Wang, S.-H.; Cheng, C.-Y.; Tang, P.-C.; Chen, C.-F.; Chen, H.-H.; Lee, Y.-P.; Huang, S.-Y. Acute Heat Stress Induces Differential Gene Expressions in the Testes of a Broiler-Type Strain of Taiwan Country Chickens. PLoS ONE 2015, 10, e0125816. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shen, X.; Zhou, M.; Fang, M.; Zeng, H.; Nie, Q.; Zhang, X. The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet. 2010, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Calefi, A.S.; Fonseca, J.G.d.S.; Nunes, C.A.d.Q.; Lima, A.P.N.; Quinteiro-Filho, W.M.; Flório, J.C.; Zager, A.; Ferreira, A.J.P.; Palermo-Neto, J. Heat Stress Modulates Brain Monoamines and Their Metabolites Production in Broiler Chickens Co-Infected with Clostridium perfringens Type A and Eimeria spp. Vet. Sci. 2019, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Marrero, M.G.; Dado-Senn, B.; Field, S.L.; Yang, G.; Driver, J.P.; Laporta, J. Chronic heat stress delays immune system development and alters serotonin signaling in pre-weaned dairy calves. PLoS ONE 2021, 16, e0252474. [Google Scholar] [CrossRef] [PubMed]
- Cargnello, M.; Roux, P.P. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50–83. [Google Scholar] [CrossRef]
- Rezatabar, S.; Karimian, A.; Rameshknia, V.; Parsian, H.; Majidinia, M.; Kopi, T.A.; Bishayee, A.; Sadeghinia, A.; Yousefi, M.; Monirialamdari, M.; et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol. 2019, 234, 14951–14965. [Google Scholar] [CrossRef] [PubMed]
- Darling, N.J.; Cook, S.J. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim. Biophys. Acta Mol. Cell Res. 2014, 1843, 2150–2163. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.R.; Lee, J.-S. DNA Damage Response Mediated through BRCA1. Cancer Res. Treat. 2004, 36, 214. [Google Scholar] [CrossRef] [PubMed]
- Tabler, T.W.; Greene, E.S.; Orlowski, S.K.; Hiltz, J.Z.; Anthony, N.B.; Dridi, S. Intestinal Barrier Integrity in Heat-Stressed Modern Broilers and Their Ancestor Wild Jungle Fowl. Front. Vet. Sci. 2020, 7, 249. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Zhang, Y.; Bai, D.-Y.; Liu, Y.-H.; He, X.-L.; Ito, K.; Liu, K.-X.; Tan, H.-Q.; Zhen, W.-R.; Zhang, C.; et al. Effects of dietary chlorogenic acid on ileal intestinal morphology, barrier function, immune factors and gut microbiota of broilers under high stocking density stress. Front. Physiol. 2023, 14, 1169375. [Google Scholar] [CrossRef]
- Gouda, A.; Tolba, S.; Mahrose, K.; Felemban, S.G.; Khafaga, A.F.; Khalifa, N.E.; Jaremko, M.; Moustafa, M.; Alshaharni, M.O.; Algopish, U.; et al. Heat shock proteins as a key defense mechanism in poultry production under heat stress conditions. Poult. Sci. 2024, 103, 103537. [Google Scholar] [CrossRef] [PubMed]
- Stetler, R.A.; Gan, Y.; Zhang, W.; Liou, A.K.; Gao, Y.; Cao, G.; Chen, J. Heat shock proteins: Cellular and molecular mechanisms in the central nervous system. Prog. Neurobiol. 2010, 92, 184–211. [Google Scholar] [CrossRef] [PubMed]
- Tellechea, M.; Buxadé, M.; Tejedor, S.; Aramburu, J.; López-Rodríguez, C. NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes. J. Immunol. 2018, 200, 305–315. [Google Scholar] [CrossRef]
- Luo, Q.B.; Song, X.Y.; Ji, C.L.; Zhang, X.Q.; Zhang, D.X. Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling. Gene 2014, 546, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Tang, S.; Liu, L.; Cao, A.; Xie, J.; Zhang, H. Effects of Bile Acids on Growth Performance and Lipid Metabolism during Chronic Heat Stress in Broiler Chickens. Animals 2021, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Jin, W.; Fu, S.; Li, D.; Zhang, Y.; Sun, G.; Jiang, R.; Han, R.; Li, Z.; et al. Analyses of MicroRNA and mRNA Expression Profiles Reveal the Crucial Interaction Networks and Pathways for Regulation of Chicken Breast Muscle Development. Front. Genet. 2019, 10, 197. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Chen, H.; Xue, J.; Li, P.; Fu, X. The role of GLUT2 in glucose metabolism in multiple organs and tissues. Mol. Biol. Rep. 2023, 50, 6963–6974. [Google Scholar] [CrossRef] [PubMed]
- Saneyasu, T.; Honda, K.; Kamisoyama, H. Myostatin Increases Smad2 Phosphorylation and Atrogin-1 Expression in Chick Embryonic Myotubes. J. Poult. Sci. 2019, 56, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Saneyasu, T.; Kimura, S.; Inui, M.; Yoshimoto, Y.; Honda, K.; Kamisoyama, H. Differences in the expression of genes involved in skeletal muscle proteolysis between broiler and layer chicks during food deprivation. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2015, 186, 36–42. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Feng, J.; Zhou, Y. Myostatin and Related Factors Are Involved in Skeletal Muscle Protein Breakdown in Growing Broilers Exposed to Constant Heat Stress. Animals 2021, 11, 1467. [Google Scholar] [CrossRef]
- Romero, L.M.; Platts, S.H.; Schoech, S.J.; Wada, H.; Crespi, E.; Martin, L.B.; Buck, C.L. Understanding stress in the healthy animal—Potential paths for progress. Stress 2015, 18, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Fallahsharoudi, A.; de Kock, N.; Johnsson, M.; Ubhayasekera, S.J.K.A.; Bergquist, J.; Wright, D.; Jensen, P. Domestication Effects on Stress Induced Steroid Secretion and Adrenal Gene Expression in Chickens. Sci. Rep. 2015, 5, 15345. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.L.; Ubuka, T.; Tsutsui, K. Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone. Front. Neuroendocrinol. 2022, 64, 100953. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Fang, R.; Xue, J.; Yang, K.; Lu, Y. Effects of Catalase on Growth Performance, Antioxidant Capacity, Intestinal Morphology, and Microbial Composition in Yellow Broilers. Front. Vet. Sci. 2022, 9, 802051. [Google Scholar] [CrossRef]
- Tarkhan, A.; Saleh, K.; Al-Zghoul, M. HSF3 and Hsp70 Expression during Post-Hatch Cold Stress in Broiler Chickens Subjected to Embryonic Thermal Manipulation. Vet. Sci. 2020, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Shehata, A.M.; Saadeldin, I.M.; Tukur, H.A.; Habashy, W.S. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals 2020, 10, 2407. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.; Seong, P.; Arora, D.; Shin, D.; Park, W.; Park, J.-E. Transcriptomic Response under Heat Stress in Chickens Revealed the Regulation of Genes and Alteration of Metabolism to Maintain Homeostasis. Animals 2021, 11, 2241. [Google Scholar] [CrossRef] [PubMed]
- Livingston, M.L.; Pokoo-Aikins, A.; Frost, T.; Laprade, L.; Hoang, V.; Nogal, B.; Phillips, C.; Cowieson, A.J. Effect of Heat Stress, Dietary Electrolytes, and Vitamins E and C on Growth Performance and Blood Biochemistry of the Broiler Chicken. Front. Anim. Sci. 2022, 3, 807267. [Google Scholar] [CrossRef]
- Jacobs, A.T.; Marnett, L.J. HSF1-mediated BAG3 Expression Attenuates Apoptosis in 4-Hydroxynonenal-treated Colon Cancer Cells via Stabilization of Anti-apoptotic Bcl-2 Proteins. J. Biol. Chem. 2009, 284, 9176–9183. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.H.; Kang, D.; Park, J.; Khan, M.; Shim, K. Chronic heat stress regulates the relation between heat shock protein and immunity in broiler small intestine. Sci. Rep. 2020, 10, 18872. [Google Scholar] [CrossRef] [PubMed]
- Bastaki, N.K.; Albarjas, T.A.; Almoosa, F.A.; Al-Adsani, A.M. Chronic heat stress induces the expression of HSP genes in the retina of chickens (Gallus gallus). Front. Genet. 2023, 14, 1085590. [Google Scholar] [CrossRef] [PubMed]
- Genest, O.; Wickner, S.; Doyle, S.M. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. J. Biol. Chem. 2019, 294, 2109–2120. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.M.; Hoskins, J.R.; Kravats, A.N.; Heffner, A.L.; Garikapati, S.; Wickner, S. Intermolecular Interactions between Hsp90 and Hsp70. J. Mol. Biol. 2019, 431, 2729–2746. [Google Scholar] [CrossRef] [PubMed]
- Cedraz, H.; Gromboni, J.G.G.; Garcia, A.A.P.; Farias Filho, R.V.; Souza, T.M.; de Oliveira, E.R.; de Oliveira, E.B.; Nascimento, C.S.d.; Meneghetti, C.; Wenceslau, A.A. Heat stress induces expression of HSP genes in genetically divergent chickens. PLoS ONE 2017, 12, e0186083. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 2005, 62, 670. [Google Scholar] [CrossRef] [PubMed]
- AL-Jaryan, I.L.; AL-Thuwaini, T.M.; AL-Jebory, H.H. Heat Shock Protein 70 and Its Role in Alleviating Heat Stress and Improving Livestock Performance. Rev. Agric. Sci. 2023, 11, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Sugito, S.; Etriwati, E.; Akmal, M.; Rahmi, E.; Delima, M.; Muchlisin, Z.A.; Hasan, D.I. Immunohistochemical Expression of AQP2 and HSP70 in Broiler Kidney Tissue Treated with Salix tetrasperma Roxb. Extract under Heat Exposure. Sci. World J. 2021, 2021, 8711286. [Google Scholar] [CrossRef] [PubMed]
- Coester, B.; Pence, S.W.; Arrigoni, S.; Boyle, C.N.; Le Foll, C.; Lutz, T.A. RAMP1 and RAMP3 Differentially Control Amylin’s Effects on Food Intake, Glucose and Energy Balance in Male and Female Mice. Neuroscience 2020, 447, 74–93. [Google Scholar] [CrossRef]
- Goel, A.; Ncho, C.M.; Choi, Y.-H. Regulation of gene expression in chickens by heat stress. J. Anim. Sci. Biotechnol. 2021, 12, 11. [Google Scholar] [CrossRef]
- Proszkowiec-Weglarz, M.; Schreier, L.L.; Kahl, S.; Miska, K.B.; Russell, B.; Elsasser, T.H. Effect of delayed feeding post-hatch on expression of tight junction– and gut barrier–related genes in the small intestine of broiler chickens during neonatal development. Poult. Sci. 2020, 99, 4714–4729. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Sheikhahmadi, A.; Wang, Y.; Jiao, H.; Lin, H.; Song, Z. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). Int. J. Biometeorol. 2015, 59, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, Z.; Wang, Y.; Jia, H.; Wang, Z.; Zhang, L. Heat stress exposure cause alterations in intestinal microbiota, transcriptome, and metabolome of broilers. Front. Microbiol. 2023, 14, 1244004. [Google Scholar] [CrossRef] [PubMed]
- Abdelli, N.; Ramser, A.; Greene, E.S.; Beer, L.; Tabler, T.W.; Orlowski, S.K.; Pérez, J.F.; Solà-Oriol, D.; Anthony, N.B.; Dridi, S. Effects of Cyclic Chronic Heat Stress on the Expression of Nutrient Transporters in the Jejunum of Modern Broilers and Their Ancestor Wild Jungle Fowl. Front. Physiol. 2021, 12, 733134. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Aghakeshmiri, S.; Chen, Y.T.; Zhang, H.M.; Yip, F.; Yang, D. NFAT5-Mediated Signalling Pathways in Viral Infection and Cardiovascular Dysfunction. Int. J. Mol. Sci. 2021, 22, 4872. [Google Scholar] [CrossRef]
- Lee, N.; Kim, D.; Kim, W.-U. Role of NFAT5 in the Immune System and Pathogenesis of Autoimmune Diseases. Front. Immunol. 2019, 10, 270. [Google Scholar] [CrossRef]
- Zhang, S.; Hulver, M.W.; McMillan, R.P.; Cline, M.A.; Gilbert, E.R. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr. Metab. 2014, 11, 10. [Google Scholar] [CrossRef]
- Dunislawska, A.; Siwek, M.; Slawinska, A.; Lepczynski, A.; Herosimczyk, A.; Kolodziejski, P.A.; Bednarczyk, M. Metabolic Gene Expression in the Muscle and Blood Parameters of Broiler Chickens Stimulated In Ovo with Synbiotics. Animals 2020, 10, 687. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef]
- Kouvedaki, I.; Pappas, A.C.; Surai, P.F.; Zoidis, E. Nutrigenomics of Natural Antioxidants in Broilers. Antioxidants 2024, 13, 270. [Google Scholar] [CrossRef]
- Saleh, K.M.M.; Tarkhan, A.H.; Al-Zghoul, M.B. Embryonic Thermal Manipulation Affects the Antioxidant Response to Post-Hatch Thermal Exposure in Broiler Chickens. Animals 2020, 10, 126. [Google Scholar] [CrossRef] [PubMed]
- Del Vesco, A.P.; Khatlab, A.S.; Goes, E.S.R.; Utsunomiya, K.S.; Vieira, J.S.; Oliveira Neto, A.R.; Gasparino, E. Age-related oxidative stress and antioxidant capacity in heat-stressed broilers. Animal 2017, 11, 1783–1790. [Google Scholar] [CrossRef]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Kemp, K.; Poe, C. Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int. J. Mol. Sci. 2019, 20, 1792. [Google Scholar] [CrossRef]
- Tokutake, Y.; Takanashi, R.; Kikusato, M.; Toyomizu, M.; Sato, K. Effect of Dietary 4-Phenylbuthyric Acid Supplementation on Acute Heat-Stress-Induced Hyperthermia in Broiler Chickens. Animals 2022, 12, 2056. [Google Scholar] [CrossRef]
- Amin-Wetzel, N.; Saunders, R.A.; Kamphuis, M.J.; Rato, C.; Preissler, S.; Harding, H.P.; Ron, D. A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response. Cell 2017, 171, 1625–1637.e13. [Google Scholar] [CrossRef]
- Hiramatsu, N.; Joseph, V.T.; Lin, J.H. Monitoring and Manipulating Mammalian Unfolded Protein Response; Academic Press: Cambridge, MA, USA, 2011; pp. 183–198. [Google Scholar]
- Hussien, Y.; Podojil, J.R.; Robinson, A.P.; Lee, A.S.; Miller, S.D.; Popko, B. ER Chaperone BiP/GRP78 Is Required for Myelinating Cell Survival and Provides Protection during Experimental Autoimmune Encephalomyelitis. J. Neurosci. 2015, 35, 15921–15933. [Google Scholar] [CrossRef] [PubMed]
- Sisinni, L.; Pietrafesa, M.; Lepore, S.; Maddalena, F.; Condelli, V.; Esposito, F.; Landriscina, M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Breast Cancer: The Balance between Apoptosis and Autophagy and Its Role in Drug Resistance. Int. J. Mol. Sci. 2019, 20, 857. [Google Scholar] [CrossRef]
- Tang, L.-P.; Liu, Y.-L.; Zhang, J.-X.; Ding, K.-N.; Lu, M.-H.; He, Y.-M. Heat stress in broilers of liver injury effects of heat stress on oxidative stress and autophagy in liver of broilers. Poult. Sci. 2022, 101, 102085. [Google Scholar] [CrossRef]
- Gómez-Virgilio, L.; Silva-Lucero, M.-C.; Flores-Morelos, D.-S.; Gallardo-Nieto, J.; Lopez-Toledo, G.; Abarca-Fernandez, A.-M.; Zacapala-Gómez, A.-E.; Luna-Muñoz, J.; Montiel-Sosa, F.; Soto-Rojas, L.O.; et al. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells 2022, 11, 2262. [Google Scholar] [CrossRef] [PubMed]
- Piekarski, A.L.; Bottje, W.G. Autophagy and Its Potential Role in Stress and Feed Efficiency Using Avian Lines; University of Arkansas: Fayetteville, AR, USA, 2015; p. 149. [Google Scholar]
- Tesseraud, S.; Avril, P.; Bonnet, M.; Bonnieu, A.; Cassar-Malek, I.; Chabi, B.; Dessauge, F.; Gabillard, J.-C.; Perruchot, M.-H.; Seiliez, I. Autophagy in farm animals: Current knowledge and future challenges. Autophagy 2021, 17, 1809–1827. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Huang, B.; Tang, S.; Sun, J.; Bao, E. Co-enzyme Q10 protects primary chicken myocardial cells from heat stress by upregulating autophagy and suppressing the PI3K/AKT/mTOR pathway. Cell Stress Chaperones 2019, 24, 1067–1078. [Google Scholar] [CrossRef]
- Pritchett, E.M.; Van Goor, A.; Schneider, B.K.; Young, M.; Lamont, S.J.; Schmidt, C.J. Chicken pituitary transcriptomic responses to acute heat stress. Mol. Biol. Rep. 2023, 50, 5233–5246. [Google Scholar] [CrossRef]
- Wu, X.-Y.; Wang, F.-Y.; Chen, H.-X.; Dong, H.-L.; Zhao, Z.-Q.; Si, L.-F. Chronic heat stress induces lung injury in broiler chickens by disrupting the pulmonary blood-air barrier and activating TLRs/NF-κB signaling pathway. Poult. Sci. 2023, 102, 103066. [Google Scholar] [CrossRef]
- Tang, L.-P.; Li, W.-H.; Liu, Y.-L.; Lun, J.-C.; He, Y.-M. Heat stress aggravates intestinal inflammation through TLR4-NF-κB signaling pathway in Ma chickens infected with Escherichia coli O157:H7. Poult. Sci. 2021, 100, 101030. [Google Scholar] [CrossRef]
- Li, W.-H.; Liu, Y.-L.; Lun, J.-C.; He, Y.-M.; Tang, L.-P. Heat stress inhibits TLR4-NF-κB and TLR4-TBK1 signaling pathways in broilers infected with Salmonella Typhimurium. Int. J. Biometeorol. 2021, 65, 1895–1903. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Ding, K.-N.; Shen, X.-L.; Liu, H.-X.; Zhang, Y.-A.; Liu, Y.-Q.; He, Y.-M.; Tang, L.-P. Chronic heat stress promotes liver inflammation in broilers via enhancing NF-κB and NLRP3 signaling pathway. BMC Vet. Res. 2022, 18, 289. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Yu, Q.; He, Y.; Hu, R.; Xia, S.; He, J. Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers. Poult. Sci. 2019, 98, 6378–6387. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Leboutet, R.; Largeau, C.; Zentout, S.; Lefebvre, C.; Delahodde, A.; Culetto, E.; Legouis, R. Autophagy facilitates mitochondrial rebuilding after acute heat stress via a DRP-1–dependent process. J. Cell Biol. 2021, 220, 139. [Google Scholar] [CrossRef]
- Lee, J.; Giordano, S.; Zhang, J. Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. Biochem. J. 2012, 441, 523–540. [Google Scholar] [CrossRef] [PubMed]
- Pickles, S.; Vigié, P.; Youle, R.J. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr. Biol. 2018, 28, R170–R185. [Google Scholar] [CrossRef] [PubMed]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 2018, 20, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Algothmi, K.M.; Mahasneh, Z.M.H.; Abdelnour, S.A.; Khalaf, Q.A.W.; Noreldin, A.E.; Barkat, R.A.; Khalifa, N.E.; Khafaga, A.F.; Tellez-Isaias, G.; Alqhtani, A.H.; et al. Protective impacts of mitochondria enhancers against thermal stress in poultry. Poult. Sci. 2024, 103, 103218. [Google Scholar] [CrossRef]
- Huau, G.; Liaubet, L.; Gourdine, J.-L.; Riquet, J.; Renaudeau, D. Multi-tissue metabolic and transcriptomic responses to a short-term heat stress in swine. BMC Genom. 2024, 25, 99. [Google Scholar] [CrossRef] [PubMed]
- Seremelis, I.; Danezis, G.P.; Pappas, A.C.; Zoidis, E.; Fegeros, K. Avian Stress-Related Transcriptome and Selenotranscriptome: Role during Exposure to Heavy Metals and Heat Stress. Antioxidants 2019, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, S.; Fuhrmann-Aoyagi, M.B.; Yuan, S.; Iwama, T.; Kobayashi, M.; Miura, K. CRISPR/Cas9 Technique for Temperature, Drought, and Salinity Stress Responses. Curr. Issues Mol. Biol. 2022, 44, 2664–2682. [Google Scholar] [CrossRef] [PubMed]
- Oishi, I.; Yoshii, K.; Miyahara, D.; Kagami, H.; Tagami, T. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Sci. Rep. 2016, 6, 23980. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, W.; Li, C. Recent Advances in Genetic and Epigenetic Modulation of Animal Exposure to High Temperature. Front. Genet. 2020, 11, 653. [Google Scholar] [CrossRef]
Trait Influenced by HS | Candidate Genes | Functions | Chicken Strain | References |
---|---|---|---|---|
Body temperature | USP22, KCNH6, MYL4, MIF, ACE, DDX42 | Disruption of DNA synthesis, RNA processing and translation, cell signaling, apoptosis, and blood vessel development | Broiler × Fayoumi AIL | [50] |
Body temperature | EZH2, RAD21, GSK3B, MLH1, RTEL1 | Apoptosis, cellular stress responses, DNA repair, and metabolic oxidative stress | Broiler-type indigenous chicken | [52] |
Body weight | HHEX, MARCH5, HECTD2, IDE, TNKS2, KIF11 | Apoptosis, immune response, and DNA synthesis | Broiler × Fayoumi AIL | [50] |
Digestibility | SLC13A5, PITPNM3, XAF1, TXNDC17 | Protein synthesis, membrane permeability, and free radical damage | Broiler × Fayoumi AIL | [50] |
Heat tolerance | TSHR | Photoperiodic response in chickens | Indigenous chickens in tropical regions | [53] |
Heat tolerance and immune response | HSP70, HSPA9, HSPH1, HSP90AB1, PLCB4 | Heat shock response and immune system activation | Iranian indigenous chickens | [20] |
Lack of feathers | FGF20 | Development of spur and feathers in chicken | Scaleless chickens | [54] |
Mortality under heat stress | LRP11, HTR2B, EIF2B5, SOD2, DBH, ERN1 | Linked to various immune and physiological functions | White Leghorn layer line | [51] |
Production, physiological, and egg quality traits | SSTR2, SOX9, HRAS, IRF7 | Cellular stress response and immune response activation | Commercial white egg-laying hens | [55] |
Response to heat stress | CEP78, MEF2C, VPS13A, ARRDC3 | Heat stress resistance in birds | F2 chicken population | [56] |
Stress response | THADA, TRPC3, MOV10L1, RAD51B, TGFB2 | Cellular stress response, DNA repair, apoptosis, and metabolic oxidative stress | Indigenous broiler chickens | [57] |
Survival to acute heat stress | VGFR4, SLC16A2, COX7B, AGPAT5, HSF2BP, SLC35F2 | Genes are linked to ubiquitin-mediated proteolysis, metabolism, and homeostasis. | Commercial layer chickens | [6] |
Thermotolerance | SCEL, KCNS2, STK3 | Heat stress resistance | Broiler-type strain Taiwan country chickens | [52] |
Viral titer under heat stress | CAMK1d, CCDC3 | These genes are responsible for immune response in chicken. | Hy-Line Brown layer chickens | [49] |
Viral titer under heat stress | TIRAP, ETS1, KIRREL3, ST3GAL4 | Adaptive immune response | Hy-Line Brown layer chickens | [49] |
Associated Pathways | Genes Involved | Function | Protective Role in Heat Stress | References |
---|---|---|---|---|
Apoptosis and Cell Survival | RB1CC1, BAG3 | Regulate apoptosis and cellular stress responses | Mitigate cellular apoptosis in the presence of adverse conditions | [71,72] |
Behavioral Adaptation | DRD1, DRD2, SERT | Dopamine and serotonin receptors | Affect stress-induced behaviors and feed intake | [73,74,75] |
Cellular Signaling | MAPK, JNK, ERK, PI3K | Signal transduction pathways | Facilitate cellular adjustments to exogenous stress signals | [76,77,78] |
DNA Repair and Integrity | BRCA1, RAD51, MSH2 | Involved in DNA damage repair | Ensure genomic integrity and inhibit mutation during periods of stress | [14,79] |
Feather Development | BMP2, FGF, EDAR | Involved in feather follicle development | Impact the density and shape of feathers to regulate body temperature | [14,54] |
Gut Health and Integrity | ZO-1, OCLN, MUC2 | Structural components of gut barrier | Preserve the integrity of the intestinal barrier and enhance the process of absorbing nutrients | [80,81] |
Heat Shock Proteins (HSPs) | HSP70, HSPH1, HSPD1, HSP90AB1, HSPB1, HSPA8 | Chaperone proteins help in protein folding | Protect cellular constituents from injury and facilitate the process of recovery Their increased expression in response to heat stress is a crucial strategy for protecting and recovering cellular function. | [82,83] |
Immune Response and Energy Metabolism | HS3ST5, NFAT5, PDK | Involved in immune response and energy metabolism | Improve the ability of cells to withstand and manage energy during times of stress | [47,84,85] |
Lipid Metabolism | ACC, FAS, SCD, SREBP-1c, PPARα | Enzymes and regulators of lipid synthesis | Under conditions of heat stress, dysregulation results in an elevated accumulation of fat. | [86,87] |
Metabolism and Energy Conversion | GLUT2, FABP1, CD36, FGA, LOXL2, GINS1, RRM2 | Transporters and enzymes for metabolism | Enhance energy generation and maintain metabolic stability under high temperatures Crucial for preserving homeostasis during periods of heat stress | [14,88] |
Muscle Development and Growth | Myostatin, Smad3, FoxO4, MAFbx, MuRF1, IGF1, Akt, MyoD | Regulate muscle protein synthesis and breakdown | Heat stress inhibits muscle hypertrophy and stimulates protein catabolism. | [89,90,91] |
Neuroendocrine and Stress Signaling | CRH, POMC, AVP | Hormones and regulators in stress response | Regulate stress reactions and behavior in response to elevated temperatures | [92,93,94] |
Oxidative Stress and Detoxification | SOD1, CAT, GPX1 | Antioxidant enzymes | Prevent oxidative damage caused by heat stress. | [95,96] |
Thermoregulation and Stress Response | HSF1, HSF3 | Heat shock factors regulating HSP expression | Regulate the physiological reaction to stress and enhance the ability to withstand high temperatures. | [97,98] |
Thyroid Hormone Activity | TSHR | Thyroid-stimulating hormone receptor | Controls the generation of heat and the rate of metabolism. | [2] |
Vascular and Muscle Contraction | MYLK2, BDKRB1 | Muscle contraction and blood flow regulation | Ensure adequate circulation and optimal muscular performance in the presence of elevated temperatures. Essential for the dispersion of heat. | [99] |
Water and Electrolyte Balance | AQP1, AQP3, NKCC1 | Water channels and ion transporters | Maintain proper hydration levels and ensure equilibrium of ions within cells. | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, A.H.; Setthaya, P.; Feng, C. Exploring Evolutionary Adaptations and Genomic Advancements to Improve Heat Tolerance in Chickens. Animals 2024, 14, 2215. https://doi.org/10.3390/ani14152215
Nawaz AH, Setthaya P, Feng C. Exploring Evolutionary Adaptations and Genomic Advancements to Improve Heat Tolerance in Chickens. Animals. 2024; 14(15):2215. https://doi.org/10.3390/ani14152215
Chicago/Turabian StyleNawaz, Ali Hassan, Phatthawin Setthaya, and Chungang Feng. 2024. "Exploring Evolutionary Adaptations and Genomic Advancements to Improve Heat Tolerance in Chickens" Animals 14, no. 15: 2215. https://doi.org/10.3390/ani14152215