Whole-Genome Resequencing Reveals Genetic Diversity and Growth Trait-Related Genes in Pinan Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Sample Collection, DNA Extraction, and Genome Resequencing
2.3. Read Mapping and Single-Nucleotide Variant (SNV) Calling
2.4. Population Genetic Structure and Genetic Diversity Analysis
2.5. Detection of Positive Selection Signatures
2.6. GeneSet Enrichment Analysis
2.7. Protein Structure Prediction
3. Results
3.1. Sequencing and SNV Calling
3.2. Population Genetic Structure Analysis
3.3. LD Decay of the Cattle Populations
3.4. Positive Selection Signatures in Pinan Cattle Population
3.5. Protein Analysis and Validation of the Positively Selected Locus GCLC c.429C>T in Pinan Cattle Population
4. Discussion
4.1. Population Genetic Analysis
4.2. Selection Signature Analysis
4.2.1. Positively Selected Genes Related to Growth Traits
4.2.2. Positively Selected Genes Related to Reproduction Traits
4.2.3. Positively Selected Genes Related to Immune Traits
4.3. Positively Selected Locus GCLC c.429C>T in Pinan Cattle Population
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, X.M.; Li, M.X.; Hao, D.; Hua, L.S.; Lan, X.Y.; Lei, C.Z.; Hu, S.R.; Qi, X.L.; Chen, H. Two novel polymorphisms of bovine SIRT2 gene are associated with higher body weight in Nanyang cattle. Mol. Biol. Rep. 2015, 42, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.T.; Zhang, S.J.; Zhang, H.J.; Zhang, Z.J.; Chen, N.B.; Li, Z.G.; Sun, H.X.; Liu, X.; Lyu, S.J.; Wang, X.W.; et al. Assessing genomic diversity and signatures of selection in Jiaxian Red cattle using whole-genome sequencing data. BMC Genom. 2021, 22, 43. [Google Scholar] [CrossRef]
- Yao, L.G.; Sun, S.; Sun, Z.H.; Li, Q.Z.; Bai, Y.Y. Analysis on the Present Situation and Development Prospect of Pinan Cattle. China Cattle Sci. 2023, 3, 57–61. [Google Scholar]
- Wang, J.Q.; Wang, Y.H.; Tan, S.J.; Ru, B.R.; Liu, X.; Li, Q.Z. Study on the performance of Pinan cattle growth, reproduction and slaughter meat quality. China Cattle Sci. 2019, 45, 52–54. [Google Scholar]
- Pang, P.Y.; Zhang, Z.J.; Liu, X.; Yao, Z.; Wang, H.R.; Song, X.Y.; Wang, J.Q.; Li, Q.Z.; Wang, E.Y.; Ru, B.R.; et al. Basic Ideas and Key Measures for Improving Breeding of Pinan Cattle. China Cattle Sci. 2022, 5, 83–85+96. [Google Scholar]
- Rubin, C.J.; Zody, M.C.; Eriksson, J.; Meadows, J.R.S.; Sherwood, E.; Webster, M.T.; Jiang, L.; Ingman, M.; Sharpe, T.; Ka, S.; et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010, 464, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.L.; Zhang, B.Z.; Luo, J.; Li, J.B.; Liang, J.Y.; Wu, W.H.; Xie, Y.Z.; Li, F.Q.; Lei, C.Z.; Yi, K.L. Genomics, Origin and Selection Signals of Loudi Cattle in Central Hunan. Biology 2022, 11, 1775. [Google Scholar] [CrossRef] [PubMed]
- Igoshin, A.; Yudin, N.; Aitnazarov, R.; Yurchenko, A.A.; Larkin, D.M. Whole-Genome Resequencing Points to Candidate DNA Loci Affecting Body Temperature under Cold Stress in Siberian Cattle Populations. Life 2021, 11, 959. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Xia, X.; Hanif, Q.; Zhang, F.; Dang, R.; Huang, B.; Lyu, Y.; Luo, X.; Zhang, H.; Yan, H.; et al. Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing. Nat. Commun. 2023, 14, 7803. [Google Scholar] [CrossRef]
- Tong, X.K.; Chen, D.; Hu, J.C.; Lin, S.Y.; Ling, Z.Q.; Ai, H.S.; Zhang, Z.Y.; Huang, L.S. Accurate haplotype construction and detection of selection signatures enabled by high quality pig genome sequences. Nat. Commun. 2023, 14, 5126. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- de Sena Brandine, G.; Smith, A.D. Falco: High-speed FastQC emulation for quality control of sequencing data. F1000Research 2019, 8, 1874. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data, P. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Hunt, S.E.; Moore, B.; Amode, R.M.; Armean, I.M.; Lemos, D.; Mushtaq, A.; Parton, A.; Schuilenburg, H.; Szpak, M.; Thormann, A.; et al. Annotating and prioritizing genomic variants using the Ensembl Variant Effect Predictor-A tutorial. Hum. Mutat. 2022, 43, 986–997. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Yang, J.A.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A Tool for Genome-wide Complex Trait Analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11 Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dong, S.S.; Xu, J.Y.; He, W.M.; Yang, T.L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014, 42, W252–W258. [Google Scholar] [CrossRef] [PubMed]
- Mooers, B.H.M. Shortcuts for faster image creation in PyMOL. Protein Sci. 2020, 29, 268–276. [Google Scholar] [CrossRef]
- He, H.; Li, Y.Z.; Chen, J.Q.; Xian, J.X.; Zheng, L.T.; Sun, H.B.; Fan, S.C.; Fu, J.Q.; Li, Q.S.; Chen, C.Y.; et al. Identification and genetic characteristics of tusavirus in fecal samples of patients with chronic diseases in Guangzhou, China. Front. Microbiol. 2023, 14, 1205134. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.-H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Zhao, L.H.; Wang, J.P.; Jiang, Q.; Ju, Z.H.; Wang, X.G.; Yang, C.H.; Gao, Y.P.; Wei, X.C.; Zhang, Y.R.; et al. Signatures of selection in indigenous Chinese cattle genomes reveal adaptive genes and genetic variations to cold climate. J. Anim. Sci. 2023, 101, 006. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Li, Z.H.; Yan, Y.B.; Li, Y.; Wu, H.; Pei, J.; Yan, P.; Yang, R.L.; Guo, X.; Lan, X.Y. Selection and introgression facilitated the adaptation of Chinese native endangered cattle in extreme environments. Evol. Appl. 2021, 14, 860–873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Yao, Z.; Li, X.M.; Zhang, Z.J.; Liu, X.; Yang, P.; Chen, N.B.; Xia, X.T.; Lyu, S.J.; Shi, Q.T.; et al. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genom. 2022, 23, 460. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhao, M.; Mundy, G.R. Bone morphogenetic proteins. Growth Factors 2004, 22, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, K.; Bandyopadhyay, A.; Harfe, B.D.; Cox, K.; Kakar, S.; Gerstenfeld, L.; Einhorn, T.; Tabin, C.J.; Rosen, V. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat. Genet. 2006, 38, 1424–1429. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Hofmann, C.; Bronckers, A.; Sohocki, M.; Bradley, A.; Karsenty, G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 1995, 9, 2808–2820. [Google Scholar] [CrossRef] [PubMed]
- Larbuisson, A.; Dalcq, J.; Martial, J.A.; Muller, M. Fgf receptors Fgfr1a and Fgfr2 control the function of pharyngeal endoderm in late cranial cartilage development. Differentiation 2013, 86, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Kogerman, P.; Lindström, E.; Toftgárd, R.; Biesecker, L.G. GLI3 mutations in human disorders mimic Drosophila Cubitus interruptus protein functions and localization. Proc. Natl. Acad. Sci. USA 1999, 96, 2880–2884. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; Jang, Y.C.; Oh, J.; Khong, D.; Wu, E.Y.; Manohar, R.; Miller, C.; Regalado, S.G.; Loffredo, F.S.; Pancoast, J.R.; et al. Restoring Systemic GDF11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle. Science 2014, 344, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Loffredo, F.S.; Steinhauser, M.L.; Jay, S.M.; Gannon, J.; Pancoast, J.R.; Yalamanchi, P.; Sinha, M.; Dall’Osso, C.; Khong, D.M.; Shadrach, J.L.; et al. Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell 2013, 153, 828–839. [Google Scholar] [CrossRef] [PubMed]
- England, S.J.; Rusnock, A.K.; Mujcic, A.; Kowalchuk, A.; de Jager, S.; Hilinski, W.C.; Juárez-Morales, J.L.; Smith, M.E.; Grieb, G.; Banerjee, S.; et al. Molecular analyses of zebrafish V0v spinal interneurons and identification of transcriptional regulators downstream of Evx1 and Evx2 in these cells. Neural Dev. 2023, 18, 8. [Google Scholar] [CrossRef]
- Jorgensen, E.M.; Ruman, J.I.; Doherty, L.; Taylor, H.S. A novel mutation of HOXA13 in a family with hand-foot-genital syndrome and the role of polyalanine expansions in the spectrum of Müllerian fusion anomalies. Fertil. Steril. 2010, 94, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Gendron-Maguire, M.; Mallo, M.; Zhang, M.; Gridley, T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 1993, 75, 1317–1331. [Google Scholar] [CrossRef] [PubMed]
- Chau, Y.M.; Pando, S.; Taylor, H.S. HOXA11 silencing and endogenous HOXA11 antisense ribonucleic acid in the uterine endometrium. J. Clin. Endocrinol. Metab. 2002, 87, 2674–2680. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.Z.; Zhou, S.J.; Li, Z.R.; Huang, X.F.; He, Y.W.; Zhang, Y.H.; Zhao, X.X.; Tang, Y.D.; Xu, M. NCAPG2 could be an immunological and prognostic biomarker: From pan-cancer analysis to pancreatic cancer validation. Front. Immunol. 2023, 14, 1097403. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Tu, C.F.; Meng, L.L.; Yuan, S.M.; Sjaarda, C.; Luo, A.X.; Du, J.; Li, W.; Gong, F.; Zhong, C.G.; et al. Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans. Genet. Med. 2019, 21, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Li, H.; Liu, X.; Wang, Y.; Li, W.; Meng, L.; Wang, W.; Li, Y.; Li, D.; Du, J.; et al. TDRD7 participates in lens development and spermiogenesis by mediating autophagosome maturation. Autophagy 2021, 17, 3848–3864. [Google Scholar] [CrossRef] [PubMed]
- Sghaier, I.; Zidi, S.; El-Ghali, R.M.; Daldoul, A.; Aimagambetova, G.; Almawi, W.Y. Unique ESR1 and ESR2 estrogen receptor gene variants associated with altered risk of triple-negative breast cancer: A case-control study. Gene 2023, 851, 146969. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.Z.; Zhang, Y.; Sethi, I.; Ye, L.C.; Trembley, M.A.; Cao, Y.P.; Akerberg, B.N.; Xiao, F.; Zhang, X.R.; Li, K.; et al. GATA4 Regulates Developing Endocardium Through Interaction with ETS1. Circ. Res. 2022, 131, E152–E168. [Google Scholar] [CrossRef] [PubMed]
- Grizzi, F.; Chiriva-Internati, M.; Miranda, E.; Zaharie, R.; Al Hajjar, N.; Zaharie, F.; Del Arco, C.D.; Fernández-Aceñero, M.J.; Bresalier, R.S.; Mois, E. Sperm protein antigen 17 and Sperm flagellar 1 cancer testis antigens are expressed in a rare case of ciliated foregut cyst of the common hepatic duct. Pathol. Res. Pract. 2023, 247, 154546. [Google Scholar] [CrossRef]
- Wang, H.Y.; Lin, C.H.; Shen, Y.R.; Chen, T.Y.; Wang, C.Y.; Kuo, P.L. Protein Kinase A-Mediated Septin7 Phosphorylation Disrupts Septin Filaments and Ciliogenesis. Cells 2021, 10, 361. [Google Scholar] [CrossRef]
- Szabó, L.; Telek, A.; Fodor, J.; Dobrosi, N.; Dócs, K.; Hegyi, Z.; Gönczi, M.; Csernoch, L.; Dienes, B. Reduced Expression of Septin7 Hinders Skeletal Muscle Regeneration. Int. J. Mol. Sci. 2023, 24, 13536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ou, Y.; Cheng, M.; Saadi, H.S.; Thundathil, J.C.; van der Hoorn, F.A. KLC3 is involved in sperm tail midpiece formation and sperm function. Dev. Biol. 2012, 366, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.L.; Cummings, S.W.; Roll-Mecak, A.; Tanner, M.E. Phosphinic acid-based inhibitors of tubulin polyglycylation. Chem. Commun. 2022, 58, 6530–6533. [Google Scholar] [CrossRef]
- Rigourd, V.; Chelbi, S.; Chauvet, C.; Rebourcet, R.; Barbaux, S.; Bessières, B.; Mondon, F.; Mignot, T.-M.; Danan, J.-L.; Vaiman, D. Re-evaluation of the role of STOX1 transcription factor in placental development and preeclampsia. J. Reprod. Immunol. 2009, 82, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Bohaczuk, S.C.; Cassin, J.; Slaiwa, T.I.; Thackray, V.G.; Mellon, P.L. Distal Enhancer Potentiates Activin- and GnRH-Induced Transcription of FSHB. Endocrinology 2021, 162, 069. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhu, H.; Ren, J.; Wu, H.Y.; Yu, J.E.; Jin, L.Y.; Pang, H.Y.; Pan, H.T.; Luo, S.S.; Yan, J.; et al. Follicle-stimulating hormone orchestrates glucose-stimulated insulin secretion of pancreatic islets. Nat. Commun. 2023, 14, 6991. [Google Scholar] [CrossRef] [PubMed]
- Sheng, S.M.; Liu, W.; Xue, Y.F.; Pan, Z.W.; Zhao, L.L.; Wang, F.; Qi, X.Y. Follicle-Stimulating Hormone Promotes the Development of Endometrial Cancer In Vitro and In Vivo. Int. J. Environ. Res. Public Health 2022, 19, 15344. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.H.; Yeo, S. The Effects of Serping1 siRNA in α-Synuclein Regulation in MPTP-Induced Parkinson’s Disease. Biomedicines 2023, 11, 1952. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.Z.; Fan, Y.; Jia, W.B.; Pan, X.X.; Han, G.Y.; Zhang, Y.; Chen, Z.Q.; Lu, Y.W.; Wang, J.Y.; Wu, J.D.; et al. FER Regulated by miR-206 Promotes Hepatocellular Carcinoma Progression via NF-κB Signaling. Front. Oncol. 2021, 11, 683878. [Google Scholar] [CrossRef]
- Braune, M.; Scherf, N.; Heine, C.; Sygnecka, K.; Pillaiyar, T.; Parravicini, C.; Heimrich, B.; Abbracchio, M.P.; Müller, C.E.; Franke, H. Involvement of GPR17 in Neuronal Fibre Outgrowth. Int. J. Mol. Sci. 2021, 22, 11683. [Google Scholar] [CrossRef]
- Chen, M.; Menon, M.C.; Wang, W.L.; Fu, J.; Yi, Z.Z.; Sun, Z.G.; Liu, J.; Li, Z.Z.; Mou, L.Y.; Banu, K.; et al. HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy. Nat. Commun. 2023, 14, 4297. [Google Scholar] [CrossRef]
- Girdhar, A.; Raju, K.; Prasad, K. Association Between Interleukin 6 Immunohistochemical and Plasma Levels in Invasive Ductal Carcinoma Breast: A Cross-Sectional Study. Biomed. Res. Ther. 2023, 10, 5843–5854. [Google Scholar] [CrossRef]
- Hua, L.Q.; Yang, Z.Q.; Li, W.R.; Zhang, Q.S.; Ren, Z.L.; Ye, C.; Zheng, X.; Li, D.; Long, Q.; Bai, H.M.; et al. A Novel Immunomodulator Delivery Platform Based on Bacterial Biomimetic Vesicles for Enhanced Antitumor Immunity. Adv. Mater. 2021, 33, e2103923. [Google Scholar] [CrossRef]
- Kannan, S.; O’Connor, G.M.; Bakker, E.Y. Molecular Mechanisms of PD-1 and PD-L1 Activity on a Pan-Cancer Basis: A Bioinformatic Exploratory Study. Int. J. Mol. Sci. 2021, 22, 5478. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Liu, S.Y.; Rai, K.R.; Zhou, W.Z.; Wang, S.; Chi, X.J.; Guo, G.J.; Chen, J.L.; Liu, S.S. Initial activation of STAT2 induced by IAV infection is critical for innate antiviral immunity. Front. Immunol. 2022, 13, 960544. [Google Scholar] [CrossRef]
- Cilenti, L.; Mahar, R.; Di Gregorio, J.; Ambivero, C.T.; Merritt, M.E.; Zervos, A.S. Regulation of Metabolism by Mitochondrial MUL1 E3 Ubiquitin Ligase. Front. Cell Dev. Biol. 2022, 10, 904728. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Kim, M.N.; Kim, E.G.; Leem, J.S.; Baek, S.M.; Lee, Y.J.; Kim, K.W.; Kang, M.J.; Song, T.W.; Sohn, M.H. NLRX1 knockdown attenuates pro-apoptotic signaling and cell death in pulmonary hyperoxic acute injury. Sci. Rep. 2023, 13, 3441. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.D.; Fu, Y.W.; Yin, Y.L.; Xu, K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci. 2023, 13, 85. [Google Scholar] [CrossRef]
- Topaloglu, U.; Ketani, M.A.; Akbalik, M.E.; Sagsöz, H.; Saruhan, B.G.; Bayram, B. Immunolocalization of HOXA11 and HLX Proteins in Cow Placenta During Pregnancy. Slov. Vet. Res. 2022, 59, 99–111. [Google Scholar] [CrossRef]
- Burleigh, A.; Moraitis, E.; Al Masroori, E.; Al-Abadi, E.; Hong, Y.; Omoyinmi, E.; Titheradge, H.; Stals, K.; Jones, W.D.; Gait, A.; et al. Case Report: ISG15 deficiency caused by novel variants in two families and effective treatment with Janus kinase inhibition. Front. Immunol. 2023, 14, 1287258. [Google Scholar] [CrossRef]
- Persyn, E.; Wahlen, S.; Kiekens, L.; Van Loocke, W.; Siwe, H.; Van Ammel, E.; De Vos, Z.; Van Nieuwerburgh, F.; Matthys, P.; Taghon, T.; et al. IRF2 is required for development and functional maturation of human NK cells. Front. Immunol. 2022, 13, 1038821. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.H.; Liu, C.Z.; Fan, J.H.; Zou, J.B.; Guo, M.X.; Sun, G.H. RNF138 Downregulates Antiviral Innate Immunity by Inhibiting IRF3 Activation. Int. J. Mol. Sci. 2023, 24, 16110. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Bai, L.; Lei, X.; Li, K.; Li, X.; Hou, L.; Shi, G. Establishment of TNFRSF4 knockout and humanized mice. Acta Lab. Anim. Sci. Sin. 2021, 29, 137–144. [Google Scholar]
- Hwang, S.; Lim, J.; Kang, H.Y.; Jeong, J.Y.; Joung, J.G.; Heo, J.; Jung, D.; Cho, K.Y.G.; An, H.J. Predictive biomarkers for the responsiveness of recurrent glioblastomas to activated killer cell immunotherapy. Cell Biosci. 2023, 13, 17. [Google Scholar] [CrossRef]
- Song, S.M.; Deng, X.Z.; Jiang, S.; Tian, C.; Han, J.H.; Chai, J.J.; Li, N.; Yan, Y.T.; Luo, Z.G. GRAP2 is a prognostic biomarker and correlated with immune infiltration in lung adenocarcinoma. J. Clin. Lab. Anal. 2022, 36, e24662. [Google Scholar] [CrossRef] [PubMed]
- Blombery, P.; Pazhakh, V.; Albuquerque, A.S.; Maimaris, J.; Tu, L.; Briones Miranda, B.; Evans, F.; Thompson, E.R.; Carpenter, B.; Proctor, I.; et al. Biallelic deleterious germline SH2B3 variants cause a novel syndrome of myeloproliferation and multi-organ autoimmunity. EJHaem 2023, 4, 463–469. [Google Scholar] [CrossRef]
- Xu, N.; Zheng, L.P.; Dai, Z.H.; Zhu, J.; Xie, P.; Yang, S.; Chen, F. A novel missense mutation (FGG c.1168G>T) in the gamma chain of fibrinogen causing congenital hypodysfibrinogenemia with bleeding phenotype. Hereditas 2024, 161, 4. [Google Scholar] [CrossRef]
Catalog | SNV Numbers |
---|---|
Upstream | 4,343,862 |
Downstream | 4,501,793 |
CDS | 2982 |
Intron | 45,812,978 |
Intergenic | 37,307,988 |
Splicing | 198,390 |
3’ UTR | 338,013 |
5’ UTR | 150,159 |
Synonymous | 1,711,015 |
Non-synonymous | 761,210 |
ts | 54,678,068 |
tv | 12,188,775 |
ts/tv | 4.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, D.; Feng, Y.; Bai, Y.; Li, J.; Wang, Y.; You, Z.; Shen, J.; Bai, Y. Whole-Genome Resequencing Reveals Genetic Diversity and Growth Trait-Related Genes in Pinan Cattle. Animals 2024, 14, 2163. https://doi.org/10.3390/ani14152163
Bo D, Feng Y, Bai Y, Li J, Wang Y, You Z, Shen J, Bai Y. Whole-Genome Resequencing Reveals Genetic Diversity and Growth Trait-Related Genes in Pinan Cattle. Animals. 2024; 14(15):2163. https://doi.org/10.3390/ani14152163
Chicago/Turabian StyleBo, Dongdong, Yuqing Feng, Yilin Bai, Jing Li, Yuanyuan Wang, Zerui You, Jiameng Shen, and Yueyu Bai. 2024. "Whole-Genome Resequencing Reveals Genetic Diversity and Growth Trait-Related Genes in Pinan Cattle" Animals 14, no. 15: 2163. https://doi.org/10.3390/ani14152163