Efficiency of Utilizing Bulls with High Immune Response (HIR) in Terms of Reproductive Traits of PHF Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- Age of calving (AC, days) at first (AC1) and second (AC2) calving,
- Services per conception (SPC, no./conception)—number of services per conception in first parity cows (SPC1) and second parity cows (SPC2),
- Service period (SP), days—days that elapsed between the first and last insemination resulting in first (SP1) and second conception (SP2),
- Gestation length (GL), days—length of first (GL1) and second pregnancy (GL2),
- Calving to conception interval (CCI), days—number of days between calving and conception (CCI1, CCI2),
- Calving interval period (CI), days—number of days between successive calves (CI1, CI2),
- Calving ease (CE), CE1 in first parity, CE2 in second parity,
- Model 1 (AC1): ,
- Model 2 (AC2): ,
- Model 3 (GL1): ,
- Model 4 (CCI1, CI1): ,
- Model 5: (GL2, CCI2, CI2): ,
- y—the phenotype value of the trait,
- µ—a general average,
- ai—the fixed effect of the ith HIR (I0, I25, I50),
- bj—the fixed effect of jth herd (1..7),
- ck—the fixed effect of the kth year of calving (2017, 2018, 2019),
- dl—the fixed effect of lth calving season (summer: V–X, winter: XI–IV),
- (cd)kl—the fixed effect of the klth year of calving × season of calving,
- β1X1—regression on age of first calving
- β2X2—regression on age of second calving
- β3X3—regression on milk yield in the first lactation
- β4X4—regression on milk yield in the second lactation
- eijkls—random error.
- log (λ) = +
- log () = + ,
3. Results
4. Discussion
4.1. General Characteristics of the Studied Population
4.2. The Influence of Selected Factors on the Level of Analyzed Reproduction-Related Traits
4.3. Services per Conception
4.4. Service Period
4.5. Age at Calving
4.6. Gestation Length
4.7. Calving to Conception Intervals
4.8. Calving Interval
4.9. Calving Ease
4.10. Number of Born Calves
4.11. Stillborn Calves
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hine, B.C.; Mallard, B.A.; Ingham, A.B.; Colditz, I.G. Immune competence in livestock. In Breeding Focus—Resilience; Hermesch, S., Dominik, S., Eds.; Animal Genetics and Breeding Unit, University of New England: Armidale, NSW, Australia, 2014; pp. 49–64. [Google Scholar]
- Shannon, J.J.; Mallard, B.A.; Thompson-Crispi, K. The use of high immune response bulls in a herd. In Proceedings of the Large Herds Conference, Port Elizabeth, South Africa, 1–3 June 2015. [Google Scholar]
- Husseini, N.; Beard, S.; Hodgins, D.C.; Barnes, C.; Chik, E.; Mallard, B.A. Immuno-phenotyping of Canadian beef cattle: Adaptation of the high immune response methodology for utilization in beef cattle. Transl. Anim. Sci. 2022, 6, txac006. [Google Scholar] [CrossRef] [PubMed]
- Beard, S.C. Translating High Immune Response Genomic Evaluations for Utilisation in Beef Cattle. Ph.D. Thesis, The University of Guelph, Guelph, ON, Canada, 2023. [Google Scholar]
- Thompson Crispi, K.A. Genetic Regulation of Immune Responses in Holstein Dairy Cows across Canada. Ph.D. Thesis, The University of Guelph, Guelph, ON, Canada, 2012. [Google Scholar]
- Thompson-Crispi, K.A.; Sewalem, A.; Miglior, F.; Mallard, B.A. Genetic parameters of adaptive immune response traits in Canadian Holsteins. J. Dairy Sci. 2012, 95, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Balasundaram, B.; Thiruvenkadan, A.K.; Murali, N.; Muralidharan, J.; Cauveri, D.; Saravanan, R. Importance of Genetic Evaluation of Dairy Cattle for Functional Traits: A Review. Indian J. Anim. Res. 2023, 57, 817–824. [Google Scholar] [CrossRef]
- Walz, P.H.; Montgomery, T.; Passler, T.; Riddell, K.P.; Brdaen, T.D.; Zhang, Y.; Galik, P.K.; Zuidhof, S. Comparison of reproductive performance of primiparous dairy cattle following revaccination with either modified live or killed multivalent viral vaccines in early lactation. J. Dairy Sci. 2015, 98, 8753–8763. [Google Scholar] [CrossRef] [PubMed]
- Kašná, E.; Zavadilová, L.; Vařeka, J.; Kyselová, J. General resilience in dairy cows: A review. Czech J. Anim. Sci. 2022, 67, 475–482. [Google Scholar] [CrossRef]
- Mallard, B.A.; Emam, M.; Paibomesai, M.; Thompson-Crispi, K.; Wagter-Lesperance, L. Genetic selection of cattle for improved immunity and health. Jpn. J. Vet. Res. 2015, 63 (Suppl. S1), S37–S44. [Google Scholar] [PubMed]
- Stoop, C.L.; Thompson-Crispi, K.A.; Cartwright, S.L.; Mallard, B.A. Short communication: Variation in production parameters among Canadian Holstein cows classified as high, average, and low immune responders. J. Dairy Sci. 2016, 99, 4870–4874. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, S.L.; Malchiodi, F.; Thompson-Crispi, K.; Miglior, F.; Mallard, B.A. Short communication: Prevalence of digital dermatitis in Canadian dairy cattle classified as high, average, or low antibody and cell-mediated immune responders. J. Dairy Sci. 2017, 100, 8409–8413. [Google Scholar] [CrossRef] [PubMed]
- Larmer, S.G.; Mallard, B.A. High immune response sires reduce disease incidence in North American large commercial dairy populations. Cattle Pract. 2017, 25, 74–81. [Google Scholar]
- Thompson-Crispi, K.A.; Hine, B.; Quinton, M.; Miglior, F.; Mallard, B.A. Short communication: Association of disease incidence and adaptive immune response in Holstein dairy cows. J. Dairy Sci. 2012, 95, 3888–3893. [Google Scholar] [CrossRef]
- König, S.; May, K. Invited review: Phenotyping strategies and quantitative-genetic background of resistance, tolerance, and resilience associated traits in dairy cattle. Animal 2019, 13, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Heriazon, A.; Quinton, M.; Miglior, F.; Leslie, K.E.; Sears, W.; Mallard, B.A. Phenotypic and genetic parameters of antibody and delayed-type hypersensitivity responses of lactating Holstein cows. Vet. Immunol. Immunopathol. 2013, 154, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Mallard, B.A.; Emam, M.; Fleming, K.; Paibomesai, M.; Thompson-Crispi, K.A.; Wagter-Lesperance, L. Are there Reproductive Implications when Dairy Cattle are Genetically Selected for Improved Immunity? In Proceedings of the Dairy Cattle Reproductive Council Meeting, Salt Lake City, UT, USA, 12–14 November 2014. [Google Scholar]
- Siatka, K.; Sawa, A.; Krężel-Czopek, S.; Piwczyński, D.; Bogucki, M. Effect of Some Factors on Number of Services per Conception in Dairy Cows. J. Vet. Sci. Technol. 2017, 8, 465. [Google Scholar] [CrossRef]
- Zahedi, V.; Zeynodini, S.; Yousefi, A.R.; Baghshahi, H.; Moradi-Shahrbabak, M.; Zhandi, M.; Asad Rad, M.; Fouladi-Nashta, A.A. Trends in Reproductive Status of Holstein Dairy Herds in Iran. Iran. J. Appl. Anim. Sci. 2021, 11, 497–505. [Google Scholar]
- Masia, F.; Molina, G.; Vissio, C.; Balzarini, M.; de la Sota, R.L.; Piccardi, M. Quantifying the negative impact of clinical diseases on productive and reproductive performance of dairy cows in central Argentina. Livest. Sci. 2022, 259, 104894. [Google Scholar] [CrossRef]
- Nuraddis, I.; Regassa, F.; Yilma, T.; Tolosa, T. Impact of subclinical mastitis on uterine health, reproductive performances and hormonal profile of Zebu × Friesian crossbred dairy cows in and around Jimma town dairy farms, Ethiopia. Heliyon 2023, 9, e16793. [Google Scholar]
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.O. Symposium review: Mechanisms of disruption of fertility by infectious diseases of the reproductive tract. J. Dairy Sci. 2019, 102, 3754–3765. [Google Scholar] [CrossRef] [PubMed]
- Grala, T.M.; Kuhn-Sherlock, B.; Crookenden, M.A.; Walker, C.G.; Roche, J.R.; Price, M.D.; Burke, C.R.; Meier, S. Adaptive immune response ranking is associated with reproductive phenotypes in grazing dairy cows that are divergent in genetic merit for fertility traits. J. Dairy Sci. 2022, 105, 5519–5533. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.G.; Meier, S.; Hussein, H.; McDougall, S.; Burke, C.R.; Roche, J.R.; Mitchell, M.D. Modulation of the immune system during postpartum uterine inflammation. Physiol. Genom. 2015, 47, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-Y.; Hassan, R.; Hung, H.-C.; Weber, T.; Price, W.J.; Rezamand, P.; Huo, Q. A rapid blood test to monitor the immune status change of dairy cows and to evaluate their disease risk during the periparturient period. Sens. Int. 2021, 2, 100078. [Google Scholar] [CrossRef]
- Trevisia, E.; Minutia, A. Assessment of the innate immune response in the periparturient cow. Res. Vet. Sci. 2018, 116, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Wagener, K.; Drillich, M.; Aurich, C.; Gabler, C. Endometrial Inflammation at the Time of Insemination and its Effect on Subsequent Fertility of Dairy Cows. Animals 2021, 11, 1858. [Google Scholar] [CrossRef]
- Walusimbi, S.S.; Pate, J.L. Physiology and endocrinology symposium: Role of immune cells in the corpus luteum. J. Anim. Sei. 2013, 91, 1650–1659. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, S.J. Review: Relationships between metabolism and neutrophil function in dairy cows in the peripartum period. Animal 2020, 14, s44–s54. [Google Scholar] [CrossRef] [PubMed]
- Siatka, K.; Sawa, A.; Krężel-Czopek, S. Effect of postpartum endocrine function, metabolism, and mastitis on fertility in high-yielding cows—A review. Ann. Anim. Sci. 2018, 18, 351–359. [Google Scholar] [CrossRef]
- Siatka, K.; Sawa, A.; Bogucki, M.; Piwczynski, D.; Krezel-Czopek, S. The relationships between the somatic cell counts in the milk and the fertility of Polish Holstein-Friesian cows. Vet. Med. 2019, 64, 433–439. [Google Scholar] [CrossRef]
- Ramos, O.P.; Rezende, A.L.; de Alvarenga, P.B.; Campos, C.C.; de Rezende, E.V.; Silva, M.J.B.; Carneiro, L.C.; de Moraes, G.F.; Saut, J.P.E.; dos Santos, R.M. Effect of retained placenta and clinical mastitis on reproduction parameters, immune response, and steroidogenic receptors gene expression in postpartum crossbred dairy cows. Trop. Anim. Health Prod. 2022, 54, 180. [Google Scholar] [CrossRef] [PubMed]
- D’Occhioa, M.J.; Barusellib, P.S.; Campanile, G. Metabolic health, the metabolome and reproduction in female cattle: A review. Ital. J. Anim. Sci. 2019, 18, 858–867. [Google Scholar] [CrossRef]
- Denholm, S.J.; McNeilly, T.N.; Banos, G.; Coffey, M.P.; Russell, G.C.; Bagnall, A.; Mitchell, M.C.; Wall, E. Estimating genetic and phenotypic parameters of cellular immune-associated traits in dairy cows. J. Dairy Sci. 2017, 100, 2850–2862. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute Inc. SAS/STAT9.4 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- PFHBiPM Ocena i hodowla Bydła, 2023. Dane za Rok. 2022. Available online: https://pfhb.pl/fileadmin/user_upload/OCENA/publikacje/publikacje_2023/wyniki_oceny/Wyniki_oceny_za_rok_2022_PFHBiPM_Polska.pdf (accessed on 13 February 2024).
- PFHBiPM. Żywienie. Praktyczne Przykłady Wykorzystania Raportów Wynikowych. 2021. Available online: https://pfhb.pl/fileadmin/user_upload/OCENA/publikacje/publikacje_2021/ulotka_zywienie_20210121.pdf (accessed on 13 February 2024).
- Neja, W.; Jankowska, M.; Sawa, A.; Bogucki, M. Analysis of milk and reproductive performance of the active population of cows in Poland. J. Cent. Eur. Agric. 2013, 14, 91–101. [Google Scholar] [CrossRef]
- Borkowska, D.; Piątek, D.; Januś, E.; Mucha, J. Fertility of cows in a high-yielding herd. Rocz. Nauk. PTZ 2012, 8, 21–29. [Google Scholar]
- Pytlewski, J.; Antkowiak, I.R.; Czerniawska-Piątkowska, E. Charakteristics of reproduction traits in cows with record lifetime milk yields. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2022, 362, 5–14. [Google Scholar] [CrossRef]
- Mordak, R. Podstawy monitorowania rozrodu w stadach bydła [Essentials of cattle reproduction monitoring]. Życie Weter. 2008, 83, 736–741. [Google Scholar]
- Römer, A.; Boldt, A.; Harms, J. One calf per cow and year—Not a sensible goal for high-yielding cows from either an economic or an animal welfare perspective. J. Sustain. Org. Agric. Syst. 2020, 70, 39–44. [Google Scholar] [CrossRef]
- PFHBiPM Ocena i Hodowla Bydła, 2021. Dane za Rok. 2020. Available online: https://pfhb.pl/fileadmin/user_upload/OCENA/publikacje/publikacje_2021/Wyniki_oceny_za_rok_2020_PFHBiPM_Polska.pdf (accessed on 13 February 2024).
- Muller, C.J.C.; Potgieter, J.P.; Cloete, S.W.P.; Dzama, K. Non-genetic factors affecting fertility traits in South African Holstein cows. S. Afr. J. Anim. Sci. 2014, 44, 54–63. [Google Scholar] [CrossRef]
- Siatka, K.; Sawa, A.; Piwczyński, D.; Bogucki, M.; Krężel-Czopek, S. Factors affecting first insemination success in Polish Holstein-Friesian cows. Anim. Sci. Pap. Rep. 2018, 36, 275–285. [Google Scholar]
- Scanavez, A.L.; Mendonça, L.G. Gestation Length and Overall Performance in the Subsequent Lactation of Dairy Cows Conceiving to Holstein, Jersey, or Angus Semen: An Observational Study. Kans. Agric. Exp. Stn. Res. Rep. 2018, 4, 7. [Google Scholar] [CrossRef]
- Boujenane, I.; Draga, B. Non-genetic factors affecting reproductive performance of Holstein dairy cows. Livest. Res. Rural Dev. 2021, 33, 1–9. [Google Scholar]
- Gegenfurtner, K.; Fröhlich, T.; Flenkenthaler, F.; Kösters, M.; Fritz, S.; Desnoës, O.; Le Bourhis, D.; Salvetti, P.; Sandra, O.; Charpigny, G.; et al. Genetic merit for fertility alters the bovine uterine luminal fluid proteome. Biol. Reprod. 2020, 102, 730–739. [Google Scholar] [CrossRef]
- Ring, S.C.; Graham, D.A.; Sayers, R.G.; Byrne, N.; Kelleher, M.M.; Doherty, M.L.; Berry, D.P. Genetic variability in the humoral immune response to bovine herpesvirus-1 infection in dairy cattle and genetic correlations with performance traits. J. Dairy Sci. 2018, 101, 6190–6204. [Google Scholar] [CrossRef]
- Raschia, M.A.; Maizon, D.O.; Amadio, A.F.; Nani, J.P.; Poli, M.A. Quantitative trait loci exploration and characterization of gestation length in Holstein cattle. Theriogenology 2024, 215, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Lafontaine, S.; Cue, R.I.; Sirard, M.-A. Gestational and health outcomes of dairy cows conceived by assisted reproductive technologies compared to artificial insemination. Theriogenology 2023, 198, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Nogalski, Z.; Piwczyński, D. Association of length of pregnancy with other reproductive traits in dairy cattle. Asian Australas J. Anim. Sci. 2012, 25, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Röhle, N. Einfluss der in Abhängigkeit von der Milchleistung Gewählten Rastzeit auf den Erstbesamungserfolg, den Besamungsaufwand und die Verzögerungszeit. Master’s Thesis, Humboldt Universität zu Berlin, Berlin, Germany, 2016. [Google Scholar]
- Mund, M.E.; Neuendorff, D.A.; Quail, L.; Banta, J.P.; Riley, D.G.; Welsh, T.H.; Randel, R.D. The relationship of cell-mediated immune response of Brahman cows on a calving interval. J. Anim. Sci. 2019, 97 (Suppl. S1), 44. [Google Scholar] [CrossRef]
- Lett, B.M.; Kirkpatrick, B.W. Short communication: Heritability of twinning rate in Holstein cattle. J. Dairy Sci. 2018, 101, 4307–4311. [Google Scholar] [CrossRef] [PubMed]
- Wakchaure, R.; Ganguly, S. Twinning in Cattle: A Review. ARC J. Gynecol. Obstet. 2016, 1, 1–3. [Google Scholar] [CrossRef]
- López-Gatius, F. Twins in Dairy Herds. Is It Better to Maintain Or Reduce A Pregnancy? Animals 2020, 10, 2006. [Google Scholar] [CrossRef]
- Cabrera, V.E.; Fricke, P.M. Economics of Twin Pregnancies in Dairy Cattle. Animals 2021, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F.; Garcia-Ispierto, I.; Hunter, R.H.F. Twin Pregnancies in Dairy Cattle: Observations in a Large Herd of Holstein-Friesian Dairy Cows. Animals 2020, 10, 2165. [Google Scholar] [CrossRef] [PubMed]
- Mahnani, A.; Sadeghi-Sefidmazgi, A.; Keshavarzi, H. Performance and financial consequences of stillbirth in Holstein dairy cattle. Animal 2018, 12, 617–623. [Google Scholar] [CrossRef]
Trait | n | Mean | Q1 | Median | Q3 | SD | CV | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|---|
First reproduction cycle/lactation | |||||||||
AI (days) | 4944 | 476.35 | 449 | 475 | 496 | 43.72 | 9.18 | 4.72 | 1.09 |
SPC1 | 4944 | 1.65 | 1 | 1 | 2 | 0.99 | 59.9 | 4.27 | 1.88 |
SP1 (days) | 4432 | 24.95 | 1 | 1 | 36 | 44.84 | 179.69 | 10.42 | 2.82 |
AC1 (days) | 5087 | 780.49 | 739 | 766 | 808 | 66.3 | 8.5 | 3.65 | 1.46 |
GL1 | 4562 | 276.66 | 273 | 276 | 280 | 5.45 | 1.97 | 1.67 | 0.50 |
CCI1 (days) | 1559 | 84.32 | 57 | 71 | 97 | 41.71 | 49.47 | 5.09 | 2.03 |
CI1 (days) | 2658 | 397.57 | 347 | 378 | 430 | 69.52 | 17.49 | 4.22 | 1.65 |
MY1 (kg) | 5087 | 11,076.46 | 9267.3 | 11,356.9 | 13,423.6 | 4302.43 | 38.84 | 0.9 | −0.33 |
Second reproduction cycle/lactation | |||||||||
AI (days) | 2606 | 857.04 | 804 | 846 | 898 | 75.13 | 8.77 | 1.5 | 0.87 |
SPC2 | 2606 | 1.94 | 1 | 1 | 2 | 1.29 | 66.77 | 6.35 | 2.03 |
SP2 (days) | 2201 | 38 | 1 | 1 | 59 | 58.66 | 154.34 | 8.18 | 2.42 |
AC2 (days) | 2665 | 1172.9 | 1106 | 1158 | 1226 | 95.6 | 8.15 | 1.55 | 0.93 |
GL2 | 2355 | 277.69 | 274 | 278 | 281 | 5.76 | 2.07 | 1.44 | 0.17 |
CCI2 (days) | 602 | 80.62 | 59 | 70 | 93 | 35.56 | 44.11 | 7.71 | 2.23 |
CI2 (days) | 1017 | 400.58 | 348 | 383 | 432 | 69.31 | 17.3 | 4.19 | 1.65 |
MY2 (kg) | 2665 | 11,987.35 | 9639.8 | 12,415.2 | 14,689.5 | 4313.61 | 35.98 | 0.44 | −0.42 |
Trait | HIR | Calving (Insemination) Age | Year (Y) | Season (S) | Y × S | Herd | Milk Yield |
---|---|---|---|---|---|---|---|
First | |||||||
SPC1 | 0.0823 | <0.0001 i | <0.0001 i | 0.2783 i | 0.9999 i | <0.0001 | |
SP1 | 0.0068 | <0.0001 i | <0.0001 i | 0.5602 i | 0.3638 i | <0.0001 | |
AC1 | 0.0115 | <0.0001 c | 0.0380 c | 0.0001 c | <0.0001 | ||
GL1 | 0.0001 | <0.0001 c | 0.0435 c | <0.0001 c | 0.9054 c | <0.0001 | |
CCI1 | 0.2401 | 0.7601 c | 0.0867 c | 0.3446 c | 0.6614 c | <0.0001 | <0.0001 |
CI1 | 0.1707 | 0.5464 c | 0.0004 c | 0.2868 c | 0.1868 c | <0.0001 | <0.0001 |
Second | |||||||
SPC2 | 0.4118 | 0.3332 i | <0.0001 i | 0.0017 | 0.0488 | <0.0001 | 0.4841 |
SP2 | 0.7558 | 0.6266 i | <0.0001 i | 0.0069 | 0.0041 | <0.0001 | 0.6525 |
AC2 | <0.0001 | <0.0001 c | 0.0416 c | <0.0001 c | <0.0001 | 0.2538 | |
GL2 | 0.0705 | 0.0104 c | 0.4863 c | 0.3130 c | 0.3682 c | <0.0001 | 0.1816 |
CCI2 | 0.2057 | 0.0471 c | 0.7528 c | 0.9689 c | 0.9659 c | <0.0001 | <0.0001 |
CI2 | 0.2269 | 0.1547 c | 0.1180 c | 0.3985 c | 0.2783 c | <0.0001 | <0.0001 |
Traits | Measure | Parity 1 | Parity 2 | ||||
---|---|---|---|---|---|---|---|
I0 | I25 | I50 | I0 | I25 | I50 | ||
n | 3958 | 371 | 615 | 2146 | 57 | 403 | |
SPC | LSM | 1.57 | 1.47 | 1.60 | 1.90 | 1.72 | 1.94 |
SE | 0.02 | 0.04 | 0.04 | 0.03 | 0.15 | 0.07 | |
n | 3535 | 332 | 565 | 1799 | 41 | 361 | |
SP | LSM | 21.46 A | 15.68 Aa | 23.06 a | 34.09 | 32.20 | 36.51 |
SE | 0.87 | 1.47 | 1.91 | 1.66 | 8.28 | 3.52 | |
n | 4076 | 373 | 638 | 2189 | 59 | 417 | |
AC | LSM | 786.57 | 779.06 a | 792.74 a | 1178.51 Aa | 1145.21 Ba | 1198.04 AB |
SE | 1.30 | 3.42 | 3.01 | 2.55 | 12.11 | 4,99 | |
n | 3645 | 343 | 574 | 1933 | 50 | 372 | |
GL | LSM | 277.13 A | 277.02 | 276.06 A | 277.99 | 278.17 | 277.20 |
SE | 0.11 | 0.30 | 0.26 | 0.15 | 0.81 | 0.33 | |
n | 1284 | 40 | 235 | 489 | 113 | ||
CCI | LSM | 82.13 | 91.28 | 83.04 | 86.08 | 90.77 | |
SE | 3.68 | 6.12 | 4.24 | 4.01 | 4.91 | ||
n | 2186 | 59 | 413 | 814 | 203 | ||
CI | LSM | 393.37 | 400.14 | 389.02 | 405.49 | 399.98 | |
SE | 5.20 | 7.79 | 5.67 | 5.88 | 6.95 |
Trait | Level | n/% | I0 | I25 | I50 | I0 + I25 + I50 | p | I0 | I25 | I50 | I0 + I25 + I50 | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Calving easy | Easy | n | 3561 | 327 | 531 | 4419 | 0.006 | 2111 | 55 | 395 | 2561 | 0.239 |
% | 87.99 | 87.67 | 83.49 | 87.40 | 96.88 | 94.83 | 95.41 | 96.61 | ||||
Difficult | n | 486 | 46 | 105 | 637 | 68 | 3 | 19 | 90 | |||
% | 12.01 | 12.33 | 16.51 | 12.60 | 3.12 | 5.17 | 4.59 | 3.39 | ||||
No of born calves | 1 | n | 3701 | 352 | 560 | 4613 | <0.0001 | 2003 | 49 | 360 | 2412 | 0.0007 |
% | 99.14 | 98.60 | 96.05 | 98.72 | 95.52 | 96.08 | 90.91 | 94.81 | ||||
2 | n | 32 | 5 | 23 | 60 | 94 | 2 | 36 | 132 | |||
% | 0.86 | 1.40 | 3.95 | 1.28 | 4.48 | 3.92 | 9.09 | 5.19 | ||||
Total | 3733 | 357 | 583 | 4673 | 2097 | 51 | 396 | 2544 | ||||
Stillborn calves | No | n | 3725 | 357 | 583 | 4665 | 0.3646 | 2089 | 51 | 393 | 2533 | 0.5168 |
% | 99.79 | 100.0 | 100.0 | 99.62 | 100 | 99.24 | ||||||
Yes | n | 8 | 0 | 0 | 8 | 8 | 0 | 3 | 11 | |||
% | 0.21 | 0.00 | 0.00 | 0.38 | 0.00 | 0.76 | ||||||
Total | 3733 | 357 | 583 | 4673 | 2097 | 51 | 396 | 2544 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobczyński, B.; Piwczyński, D.; Siatka, K.; Sitkowska, B.; Kolenda, M. Efficiency of Utilizing Bulls with High Immune Response (HIR) in Terms of Reproductive Traits of PHF Cows. Animals 2024, 14, 2144. https://doi.org/10.3390/ani14152144
Sobczyński B, Piwczyński D, Siatka K, Sitkowska B, Kolenda M. Efficiency of Utilizing Bulls with High Immune Response (HIR) in Terms of Reproductive Traits of PHF Cows. Animals. 2024; 14(15):2144. https://doi.org/10.3390/ani14152144
Chicago/Turabian StyleSobczyński, Bogumił, Dariusz Piwczyński, Kamil Siatka, Beata Sitkowska, and Magdalena Kolenda. 2024. "Efficiency of Utilizing Bulls with High Immune Response (HIR) in Terms of Reproductive Traits of PHF Cows" Animals 14, no. 15: 2144. https://doi.org/10.3390/ani14152144