Association of Bovine Respiratory Disease during the Pre-Weaning Period with Blood Cell Counts and Circulating Concentration of Metabolites, Minerals, and Acute Phase Proteins in Dairy Calves Transported to a Calf Raising Facility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Animals, Farm Management, and Inclusion Criteria
2.2. Data Collection and Bovine Respiratory Disease Case Definition
2.3. Blood Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Association between BRD and Blood Chemical Panel Variables
3.3. Association of BRD with Acute Phase Proteins and Leukocyte Counts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA-NAHMS. Colostrum Feeding and Management on U.S. Dairy Operations, 1991–2014; 2014. Available online: https://www.aphis.usda.gov/sites/default/files/dairy-trends-hlth-mngmnt-1991-2014.pdf (accessed on 24 June 2024).
- McGuirk, S.M.; Peek, S.F. Timely Diagnosis of Dairy Calf Respiratory Disease Using a Standardized Scoring System. Anim. Health Res. Rev. 2014, 15, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Grissett, G.P.; White, B.J.; Larson, R.L. Structured Literature Review of Responses of Cattle to Viral and Bacterial Pathogens Causing Bovine Respiratory Disease Complex. J. Vet. Intern. Med. 2015, 29, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Love, W.J.; Lehenbauer, T.W.; Kass, P.H.; Van Eenennaam, A.L.; Aly, S.S. Development of a Novel Clinical Scoring System for On-Farm Diagnosis of Bovine Respiratory Disease in Pre-Weaned Dairy Calves. PeerJ 2014, 2, e238. [Google Scholar] [CrossRef] [PubMed]
- Closs, G.; Dechow, C. The Effect of Calf-Hood Pneumonia on Heifer Survival and Subsequent Performance. Livest. Sci. 2017, 205, 5–9. [Google Scholar] [CrossRef]
- Damtew, A.; Erega, Y.; Ebrahim, H.; Tsegaye, S.; Msigie, D.; Biomed, A.D.; Sci, J.; Res, T. The Effect of Long Distance Transportation Stress on Cattle: A Review. Biomed. J. Sci. Tech. Res. 2018, 3, 1–5. [Google Scholar] [CrossRef]
- Teixeira, A.G.V.; McArt, J.A.A.; Bicalho, R.C. Thoracic Ultrasound Assessment of Lung Consolidation at Weaning in Holstein Dairy Heifers: Reproductive Performance and Survival. J. Dairy Sci. 2017, 100, 2985–2991. [Google Scholar] [CrossRef]
- Goetz, H.M.; Creutzinger, K.C.; Kelton, D.F.; Costa, J.H.C.; Winder, C.B.; Renaud, D.L. A Randomized Controlled Trial Investigating the Effect of Transport Duration and Age at Transport on Surplus Dairy Calves: Part I. Impact on Health and Growth. J. Dairy Sci. 2023, 106, 2784–2799. [Google Scholar] [CrossRef] [PubMed]
- Machado, V.S.; Ballou, M.A. Overview of Common Practices in Calf Raising Facilities. Transl. Anim. Sci. 2022, 6, txab234. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, L.E.; Moisá, S.J. Stress, Immunity, and the Management of Calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef]
- Van Engen, N.K.; Stock, M.L.; Engelken, T.; Vann, R.C.; Wulf, L.W.; Karriker, L.A.; Busby, W.D.; Lakritz, J.; Carpenter, A.J.; Bradford, B.J.; et al. Impact of Oral Meloxicam on Circulating Physiological Biomarkers of Stress and Inflammation in Beef Steers after Long-Distance Transportation. J. Anim. Sci. 2014, 92, 498–510. [Google Scholar] [CrossRef]
- Roadknight, N.; Mansell, P.; Jongman, E.; Courtman, N.; McGill, D.; Hepworth, G.; Fisher, A. Blood Parameters of Young Calves at Abattoirs Are Related to Distance Transported and Farm of Origin. J. Dairy Sci. 2021, 104, 9164–9172. [Google Scholar] [CrossRef] [PubMed]
- Goetz, H.M.; Creutzinger, K.C.; Kelton, D.F.; Costa, J.H.C.; Winder, C.B.; Gomez, D.E.; Renaud, D.L. A Randomized Controlled Trial Investigating the Effect of Transport Duration and Age at Transport on Surplus Dairy Calves: Part II. Impact on Hematological Variables. J. Dairy Sci. 2023, 106, 2800–2818. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, L.L.; Siegmann, S.; Field, N.L.; Sugrue, K.; van Reenen, C.G.; Bokkers, E.A.M.; Sayers, G.; Conneely, M. Effect of Source and Journey on Physiological Variables in Calves Transported by Road and Ferry between Ireland and the Netherlands. Front. Vet. Sci. 2023, 10, 1238734. [Google Scholar] [CrossRef] [PubMed]
- Bernardini, D.; Gerardi, G.; Peli, A.; Costa, L.N.; Amadori, M.; Segato, S. The Effects of Different Environmental Conditions on Thermoregulation and Clinical and Hematological Variables in Long-Distance Road-Transported Calves. J. Anim. Sci. 2012, 90, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Akter, A.; Caldwell, J.M.; Pighetti, G.M.; Shepherd, E.A.; Okafor, C.C.; Eckelkamp, E.A.; Edwards, J.L.; Schneider, L.G. Hematological and Immunological Responses to Naturally Occurring Bovine Respiratory Disease in Newly Received Beef Calves in a Commercial Stocker Farm. J. Anim. Sci. 2022, 100, skab363. [Google Scholar] [CrossRef]
- Cuevas-Gomez, I.; McGee, M.; McCabe, M.; Cormican, P.; O’Riordan, E.; McDaneld, T.; Earley, B. Growth Performance and Hematological Changes of Weaned Beef Calves Diagnosed with Respiratory Disease Using Respiratory Scoring and Thoracic Ultrasonography. J. Anim. Sci. 2020, 98, skaa345. [Google Scholar] [CrossRef]
- Angen, Ø.; Thomsen, J.; Larsen, L.E.; Larsen, J.; Kokotovic, B.; Heegaard, P.M.H.; Enemark, J.M.D. Respiratory Disease in Calves: Microbiological Investigations on Trans-Tracheally Aspirated Bronchoalveolar Fluid and Acute Phase Protein Response. Vet. Microbiol. 2009, 137, 165–171. [Google Scholar] [CrossRef]
- Celestino, M.L.; Fernandes, L.; Menta, P.R.; Paiva, D.; Ribeiro, T.L.; Silva, T.; Bilby, T.R.; Neves, R.C.; Ballou, M.A.; Machado, V.S. The Effect of Metaphylactic Use of Tildipirosin for the Control of Respiratory Disease in Long-Distance Transported Dairy Calves. Front. Vet. Sci. 2020, 7, 632. [Google Scholar] [CrossRef] [PubMed]
- Makimura, S.; Suzuki, N. Quantitative Determination of Bovine Serum Haptoglobin and Its Elevation in Some Inflammatory Diseases. Nihon Juigaku Zasshi 1982, 44, 15–21. [Google Scholar] [CrossRef]
- Godson, D.L.; Campos, M.; Attah-Poku, S.K.; Redmond, M.J.; Cordeiro, D.M.; Sethi, M.S.; Harland, R.J.; Babiuk, L.A. Serum Haptoglobin as an Indicator of the Acute Phase Response in Bovine Respiratory Disease. Vet. Immunol. Immunopathol. 1996, 51, 277–292. [Google Scholar] [CrossRef]
- Nikunen, S.; Härtel, H.; Orro, T.; Neuvonen, E.; Tanskanen, R.; Kivelä, S.L.; Sankari, S.; Aho, P.; Pyörälä, S.; Saloniemi, H.; et al. Association of Bovine Respiratory Disease with Clinical Status and Acute Phase Proteins in Calves. Comp. Immunol. Microbiol. Infect. Dis. 2007, 30, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Gupta, V.K.; Bhanuprakash, A.G.; Mandal, R.S.K.; Dimri, U.; Ajith, Y. Haptoglobin and Serum Amyloid A as Putative Biomarker Candidates of Naturally Occurring Bovine Respiratory Disease in Dairy Calves. Microb. Pathog. 2018, 116, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Celestino, M.L.; Menta, P.R.; Fernandes, L.; Poit, D.; Neves, R.C.; Ballou, M.A.; Caixeta, L.S.; Machado, V.S. Short Communication: Associations of Serum Biomarkers of Stress and Inflammation Measured at Arrival with Health, Mortality, and Growth of Calves Transported within the First 4 Days of Life. J. Dairy Sci. 2021, 104, 3547–3553. [Google Scholar] [CrossRef] [PubMed]
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Karle, B.M.; Rossitto, P.V.; Lehenbauer, T.W.; Aly, S.S. Epidemiology of Bovine Respiratory Disease (BRD) in Preweaned Calves on California Dairies: The BRD 10K Study. J. Dairy Sci. 2019, 102, 7306–7319. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.F.; Windeyer, M.C.; Duffield, T.F.; Haley, D.B.; Pearl, D.L.; Waalderbos, K.M.; Leslie, K.E. Associations of Serum Haptoglobin in Newborn Dairy Calves with Health, Growth, and Mortality up to 4 Months of Age. J. Dairy Sci. 2014, 97, 7844–7855. [Google Scholar] [CrossRef] [PubMed]
- Šoltésová, H.; Nagyová, V.; Tóthová, C.; Nagy, O. Haematological and Blood Biochemical Alterations Associated with Respiratory Disease in Calves. Acta Vet. Brno 2015, 84, 249–256. [Google Scholar] [CrossRef]
- Murata, H.; Miyamoto, T. Bovine Haptoglobin as a Possible Immunomodulator in the Sera of Transported Calves. Br. Vet. J. 1993, 149, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Wernicki, A.; Urban-Chmiel, R.; Puchalski, A.; Dec, M. Evaluation of the Influence of Transport and Adaptation Stress on Chosen Immune and Oxidative Parameters and Occurrence of Respiratory Syndrome in Feedlot Calves. Bull. Vet. Inst. Pulawy 2014, 58, 111–116. [Google Scholar] [CrossRef]
- Arthington, J.D.; Eicher, S.D.; Kunkle, W.E.; Martin, F.G. Effect of Transportation and Commingling on the Acute-Phase Protein Response, Growth, and Feed Intake of Newly Weaned Beef Calves. J. Anim. Sci. 2003, 81, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Hickey, M.C.; Drennan, M.; Earley, B. The Effect of Abrupt Weaning of Suckler Calves on the Plasma Concentrations of Cortisol, Catecholamines, Leukocytes, Acute-Phase Proteins and in Vitro Interferon-Gamma Production. J. Anim. Sci. 2003, 81, 2847–2855. [Google Scholar] [CrossRef]
- Buckham Sporer, K.R.; Weber, P.S.D.; Burton, J.L.; Earley, B.; Crowe, M.A. Transportation of Young Beef Bulls Alters Circulating Physiological Parameters That May Be Effective Biomarkers of Stress. J. Anim. Sci. 2008, 86, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Hanthorn, C.J.; Dewell, G.A.; Dewell, R.D.; Cooper, V.L.; Wang, C.; Plummer, P.J.; Lakritz, J. Serum Concentrations of Haptoglobin and Haptoglobin-Matrix Metalloproteinase 9 (Hp-MMP 9) Complexes of Bovine Calves in a Bacterial Respiratory Challenge Model. BMC Vet. Res. 2014, 10, 285. [Google Scholar] [CrossRef] [PubMed]
- Otter, A. Diagnostic Blood Biochemistry and Haematology in Cattle. In Pract. 2013, 35, 7–16. [Google Scholar] [CrossRef]
- Jaramillo, C.; Renaud, D.L.; Arroyo, L.G.; Kenney, D.G.; Gamsjaeger, L.; Gomez, D.E. Serum Haptoglobin Concentration and Liver Enzyme Activity as Indicators of Systemic Inflammatory Response Syndrome and Survival of Sick Calves. J. Vet. Intern. Med. 2022, 36, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Stengärde, L.; Holtenius, K.; Tråvén, M.; Hultgren, J.; Niskanen, R.; Emanuelson, U. Blood Profiles in Dairy Cows with Displaced Abomasum. J. Dairy Sci. 2010, 93, 4691–4699. [Google Scholar] [CrossRef] [PubMed]
- Holst, H.; Svensson, C. Changes in the Blood Composition of Calves during Experimental and Natural Infections with Eimeria Alabamensis. Res. Vet. Sci. 1994, 57, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and Clinical Significance. J. Parenter. Enter. Nutr. 2019, 43, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Adkins, M.L.; Rollin, E.; Heins, B.D.; Berghaus, R.D.; Credille, B.C.; Credille, B. Evaluation of Serum Metabolic Parameters as Predictors of Bovine Respiratory Disease Events in High-Risk Beef Stocker Calves. Bov. Pract. 2020, 54, 9–16. [Google Scholar] [CrossRef]
- Fraser, B.C.; Anderson, D.E.; White, B.J.; Miesner, M.D.; Lakritz, J.; Amrine, D.; Mosier, D.A. Associations of Various Physical and Blood Analysis Variables with Experimentally Induced Mycoplasma Bovis Pneumonia in Calves. Am. J. Vet. Res. 2014, 75, 200–207. [Google Scholar] [CrossRef]
- Srikandakumar, A.; Johnson, E.H. Effect of Heat Stress on Milk Production, Rectal Temperature, Respiratory Rate and Blood Chemistry in Holstein, Jersey anAd Australian Milking Zebu Cows. Trop. Anim. Health Prod. 2004, 36, 685–692. [Google Scholar] [CrossRef]
- Garner, J.B.; Douglas, M.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; DIgiacomo, K.; Leury, B.J.; Hayes, B.J. Responses of Dairy Cows to Short-Term Heat Stress in Controlled-Climate Chambers. Anim. Prod. Sci. 2017, 57, 1233–1241. [Google Scholar] [CrossRef]
- Kekana, T.W.; Nherera-Chokuda, F.V.; Muya, M.C.; Manyama, K.M.; Lehloenya, K.C. Milk Production and Blood Metabolites of Dairy Cattle as Influenced by Thermal-Humidity Index. Trop. Anim. Health Prod. 2018, 50, 921–924. [Google Scholar] [CrossRef]
- Jones, M. Interpretation of the Bovine CBC and Chemistry. AABP Proc. 2022, 55, 96–98. [Google Scholar] [CrossRef]
- Baird, M.F.; Graham, S.M.; Baker, J.S.; Bickerstaff, G.F. Creatine-Kinase- and Exercise-Related Muscle Damage Implications for Muscle Performance and Recovery. J. Nutr. Metab. 2012, 2012, 960363. [Google Scholar] [CrossRef] [PubMed]
- Cantor, M.C.; Costa, J.H.C. Daily Behavioral Measures Recorded by Precision Technology Devices May Indicate Bovine Respiratory Disease Status in Preweaned Dairy Calves. J. Dairy Sci. 2022, 105, 6070–6082. [Google Scholar] [CrossRef] [PubMed]
- Gobikrushanth, M.; Macmillan, K.; Behrouzi, A.; López-Helguera, I.; Hoff, B.; Colazo, M.G. Circulating Ca and Its Relationship with Serum Minerals, Metabolic and Nutritional Profiles, Health Disorders, and Productive and Reproductive Outcomes in Dairy Cows. Livest. Sci. 2020, 233, 103946. [Google Scholar] [CrossRef]
- Rotstein, O.D.; Vittorini, T.; Kao, J.; McBurney, M.I.; Nasmith, P.E.; Grinstein, S. A Soluble Bacteroides By-Product Impairs Phagocytic Killing of Escherichia Coli by Neutrophils. Infect. Immun. 1989, 57, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Reinhardt, T.A.; Goff, J.P. Parturition and Hypocalcemia Blunts Calcium Signals in Immune Cells of Dairy Cattle. J. Dairy Sci. 2006, 89, 2588–2595. [Google Scholar] [CrossRef]
- Martinez, N.; Risco, C.A.; Lima, F.S.; Bisinotto, R.S.; Greco, L.F.; Ribeiro, E.S.; Maunsell, F.; Galvao, K.; Santos, J.E. Evaluation of Peripartal Calcium Status, Energetic Profile, and Neutrophil Function in Dairy Cows at Low or High Risk of Developing Uterine Disease. J. Dairy Sci. 2012, 95, 7158–7172. [Google Scholar] [CrossRef]
- Naresh, R.; Dwivedi, S.K.; Dey, S.; Swarup, D. Zinc, Copper and Cobalt Concentrations in Blood During Inflammation of the Mammary Gland in Dairy Cows. Asian-Australas. J. Anim. Sci. 2001, 14, 564–566. [Google Scholar] [CrossRef]
- Bicalho, M.L.S.; Lima, F.S.; Ganda, E.K.; Foditsch, C.; Meira, E.B.S.; Machado, V.S.; Teixeira, A.G.V.; Oikonomou, G.; Gilbert, R.O.; Bicalho, R.C. Effect of Trace Mineral Supplementation on Selected Minerals, Energy Metabolites, Oxidative Stress, and Immune Parameters and Its Association with Uterine Diseases in Dairy Cattle. J. Dairy Sci. 2014, 97, 4281–4295. [Google Scholar] [CrossRef] [PubMed]
- Ballou, M.A.; Cobb, C.J.; Hulbert, L.E.; Carroll, J.A. Effects of Intravenous Escherichia Coli Dose on the Pathophysiological Response of Colostrum-Fed Jersey Calves. Vet. Immunol. Immunopathol. 2011, 141, 76–83. [Google Scholar] [CrossRef] [PubMed]
- SubramanianVignesh, K.; LanderoFigueroa, J.A.; Porollo, A.; Caruso, J.A.; Deepe, G.S. Granulocyte Macrophage-Colony Stimulating Factor Induced Zn Sequestration Enhances Macrophage Superoxide and Limits Intracellular Pathogen Survival. Immunity 2013, 39, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Berchtold, J. Treatment of Calf Diarrhea: Intravenous Fluid Therapy. Vet. Clin. N. Am. Food Anim. Pract. 2009, 25, 73. [Google Scholar] [CrossRef]
- Earley, B.; Murray, M.; Prendiville, D.J. Effect of Road Transport for up to 24 Hours Followed by Twenty-Four Hour Recovery on Live Weight and Physiological Responses of Bulls. BMC Vet. Res. 2010, 6, 38. [Google Scholar] [CrossRef]
Variable | BRD Group | p | ||
---|---|---|---|---|
NBRD 1 | EBRD 2 | LBRD 3 | ||
Total number of animals enrolled (%) | 271 (88.9) | 16 (5.2) | 18 (5.9) | |
Number of animals enrolled in spring (%) | 169 (89.4) | 7 (3.7) | 13 (6.88) | 0.21 |
Number of animals enrolled in winter (%) | 102 (87.9) | 9 (7.8) | 5 (4.3) | |
Number of animals enrolled in each metaphylaxis strategy (%) | ||||
CON 4 | 89 (89.0) | 3 (3.0) | 8 (8.0) | 0.55 |
META1 5 | 93 (90.3) | 6 (5.8) | 4 (3.9) | |
META2 6 | 89 (87.3) | 7 (6.9) | 6 (5.9) | |
Number of animals enrolled by dam’s parity (%) | ||||
Parity = 1 | 31 (86.1) | 3 (8.3) | 2 (5.6) | 0.72 |
Parity = 2 | 146 (88.0) | 8 (4.2) | 12 (7.2) | |
Parity > 2 | 94 (91.3) | 5 (4.8) | 4 (3.9) | |
Number of animals dead/euthanized (%) | 5 (1.6) | 0 (0.0) | 0 (0.0) | 0.73 |
Average body weight at enrollment, kg (SD) | 32.9 (4.2) | 32.0 (4.3) | 32.6 (3.5) | 0.69 |
Average rectal temperature at enrollment, °C (SD) | 38.7 (0.3) | 38.9 (0.3) | 38.9 (0.3) | 0.05 |
Average dam’s gestation length, d (SD) | 278.5 (6.8) | 276.5 (5.5) | 277.6 (5.0) | 0.98 |
Average daily gain during the pre-weaning period, kg (SD) | 0.52 (0.1) | 0.48 (0.1) | 0.47 (0.1) | 0.04 |
Variable | BRD | p | ||||
---|---|---|---|---|---|---|
NBRD | EBRD | LBRD | BRD | Time | BRD*Time | |
Total Protein (g/dL) | 6.12 | 6.06 | 6.21 | 0.40 | <0.01 | 0.07 |
Albumin (g/dL) | 3.27 | 3.25 | 3.23 | 0.44 | <0.01 | 0.06 |
Glucose (mg/dL) | 113.41 | 111.98 | 111.55 | 0.75 | <0.01 | 0.69 |
Log GLDH 6 (log U/L) | 1.36 | 1.37 | 1.45 | 0.19 | <0.01 | 0.04 |
Log BUN 1 (log mg/dL) | 1.03 | 1.07 | 1.02 | 0.05 | <0.01 | 0.35 |
Creatinine (mg/dL) | 0.81 | 0.79 | 0.78 | 0.49 | <0.01 | 0.73 |
Sqrt Bilirubin (sqrt mg/dL) | 0.45 | 0.44 | 0.47 | 0.18 | <0.01 | 0.32 |
Log CK 2 (log U/L) | 2.02 | 1.94 | 1.96 | 0.01 | <0.01 | 0.80 |
Log AST 3 (log U/L) | 1.63 | 1.62 | 1.62 | 0.63 | <0.01 | 0.19 |
Globulins (g/dL) | 2.88 | 2.85 | 3.02 | 0.23 | <0.01 | 0.25 |
Log A/G 4 | 0.07 | 0.06 | 0.04 | 0.20 | <0.01 | 0.97 |
Log GGT 5(log U/L) | 1.84 | 1.82 | 1.90 | 0.24 | <0.01 | 0.63 |
Log Insulin (log ng/mL) | 1.52 | 1.52 | 1.57 | 0.77 | <0.01 | 0.26 |
Log Insulin/Glucose | −0.52 | −0.51 | −0.47 | 0.64 | <0.01 | 0.28 |
Calcium (mg/dL) | 10.68 | 10.62 | 10.68 | 0.80 | <0.01 | 0.17 |
Phosphorus (mg/dL) | 9.23 | 9.27 | 9.09 | 0.55 | <0.01 | 0.04 |
Magnesium (mEq/L) | 1.94 | 1.91 | 1.91 | 0.07 | <0.01 | 0.18 |
Sodium (mEq/L) | 138.75 | 140.06 | 138.58 | <0.01 | <0.01 | 0.13 |
Potassium (mEq/L) | 5.49 | 5.63 | 5.58 | 0.08 | <0.01 | 0.03 |
Chloride (mEq/L) | 100.01 | 101.13 | 100.71 | <0.01 | <0.01 | <0.01 |
Na/K 7 (mEq/L) | 25.27 | 25.10 | 25.25 | 0.86 | <0.01 | 0.08 |
Log Zinc (log µmol/mL) | 1.32 | 1.27 | 1.29 | 0.01 | 0.01 | 0.06 |
Variable | BRD | P | ||||
---|---|---|---|---|---|---|
NBRD | EBRD | LBRD | BRD | Time | BRD*Time | |
Sqrt SAA 1 (sqrt µg/mL) | 1.39 | 1.08 | 1.18 | 0.02 | <0.01 | 0.18 |
Log Hp 2 (log µg/mL) | 1.76 | 1.66 | 1.77 | 0.57 | <0.01 | <0.01 |
White blood cells (103/µL) | 10.33 | 10.40 | 10.70 | 0.67 | <0.01 | 0.89 |
Log Neutrophils (log 103/µL) | 0.47 | 0.50 | 0.47 | 0.50 | <0.01 | 0.86 |
Monocytes (103/µL) | 1.03 | 0.95 | 1.25 | <0.01 | <0.01 | 0.76 |
Lymphocytes (103/µL) | 5.89 | 5.88 | 5.87 | 0.99 | <0.01 | 0.69 |
Log Neutrophil:Lymphocyte | −0.29 | −0.26 | −0.29 | 0.55 | <0.01 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielamowicz, L.P.; Celestino, M.L.; Menta, P.R.; Fernandes, L.; Ballou, M.; Neves, R.C.; Machado, V.S. Association of Bovine Respiratory Disease during the Pre-Weaning Period with Blood Cell Counts and Circulating Concentration of Metabolites, Minerals, and Acute Phase Proteins in Dairy Calves Transported to a Calf Raising Facility. Animals 2024, 14, 1909. https://doi.org/10.3390/ani14131909
Bielamowicz LP, Celestino ML, Menta PR, Fernandes L, Ballou M, Neves RC, Machado VS. Association of Bovine Respiratory Disease during the Pre-Weaning Period with Blood Cell Counts and Circulating Concentration of Metabolites, Minerals, and Acute Phase Proteins in Dairy Calves Transported to a Calf Raising Facility. Animals. 2024; 14(13):1909. https://doi.org/10.3390/ani14131909
Chicago/Turabian StyleBielamowicz, Lauren Paige, Maria Luiza Celestino, Paulo R. Menta, Leticia Fernandes, Michael Ballou, Rafael C. Neves, and Vinicius S. Machado. 2024. "Association of Bovine Respiratory Disease during the Pre-Weaning Period with Blood Cell Counts and Circulating Concentration of Metabolites, Minerals, and Acute Phase Proteins in Dairy Calves Transported to a Calf Raising Facility" Animals 14, no. 13: 1909. https://doi.org/10.3390/ani14131909