Stability and Detection Limit of Avian Influenza, Newcastle Disease Virus, and African Horse Sickness Virus on Flinders Technology Associates Card by Conventional Polymerase Chain Reaction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Candidate
2.2. Virus Sample Preparation
2.3. AIV Inactivation on FTA Card
2.4. Stability and Detection Limit Determination
3. Results
3.1. AIV Inactivation on FTA Card
3.2. Tested Titer Calculation
3.3. Stability and Detection Limit
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.H.; Cho, C.H.; Shin, J.H.; Yang, J.C.; Park, T.J.; Park, J.; Park, J.P. Highly sensitive and label-free detection of influenza H5N1 viral proteins using affinity peptide and porous BSA/MXene nanocomposite electrode. Anal. Chim. Acta 2023, 1251, 341018. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zeng, X.; Cui, P.; Yan, C.; Chen, H. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg. Microbes Infect. 2023, 12, 2155072. [Google Scholar] [CrossRef] [PubMed]
- Nakhaie, M.; Soleimanjahi, H.; Mollaie, H.R.; Arabzadeh, S.M.A. Development of multiplex reverse transcription-polymerase chain reaction for simultaneous detection of influenza A, B and adenoviruses. Iran. J. Pathol. 2018, 13, 54–62. [Google Scholar] [PubMed]
- Liu, Y.; Wei, Y.; Zhou, Z.; Gu, Y.; Pang, Z.; Liao, M.; Sun, H. Overexpression of TRIM16 reduces the titer of H5N1 highly pathogenic avian influenza virus and promotes the expression of antioxidant genes through regulating the SQSTM1-NRF2-KEAP1 Axis. Viruses 2023, 15, 391. [Google Scholar] [CrossRef] [PubMed]
- Scheibner, D.; Salaheldin, A.H.; Bagato, O.; Zaeck, L.M.; Mostafa, A.; Blohm, U.; Muller, C.; Eweas, A.F.; Franzke, K.; Karger, A.; et al. Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. PLoS Pathog. 2023, 19, e1011135. [Google Scholar] [CrossRef] [PubMed]
- Sutton, T.C. The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses 2018, 10, 461. [Google Scholar] [CrossRef] [PubMed]
- Claas, E.C.; Osterhaus, A.D.; Beek, R.V.; Jong, J.C.D.; Rimmelzwaan, G.F.; Senne, D.A.; Krauss, S.; Shortridge, K.F.; Webster, R.G. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 1998, 351, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Cumulative Number of Confirmed Human Cases for Avian Influenza A(H5N1) Reported to WHO, 2003–2023. Available online: https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who-2003-2022-5-jan-2023 (accessed on 5 January 2023).
- Hinjoy, S.; Thumrin, P.; Sridet, J.; Chaiyaso, C.; Smithsuwan, P.; Rodchangphuen, J.; Thukngamdee, Y.; Suddee, W. Risk perceptions of avain influenza among poultry farmers on smallholder farms along border areas of Thailand. Front. Vet. Sci. 2023, 10, 1075308. [Google Scholar] [CrossRef] [PubMed]
- Rima, B.; Balkema-Buschmann, A.; Dundon, W.G.; Duprex, P.; Easton, A.; Fouchier, R.; Kurath, G.; Lamb, R.; Lee, B.; Rota, P.; et al. ICTV Virus Taxonomy Profile: Paramyxoviridae. J. Gen. Virol. 2019, 100, 1593–1594. [Google Scholar] [CrossRef]
- Ross, C.S.; Mahmood, S.; Skinner, P.; Mayers, J.; Reid, S.M.; Hansen, R.D.E.; Banyard, A.C. JMM Profile: Avian paramyxovirus type-1 and Newcastle disease: A highly infectious vaccine-preventable viral disease of poultry with low zoonotic potential. J. Med. Microbiol. 2022, 71, 001489. [Google Scholar] [CrossRef]
- Charostad, J.; Rukerd, M.R.Z.; Mahmoudvand, S.; Bashash, D.; Hashemi, S.M.A.; Nakhaie, M.; Zandi, K. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med. Infect. Dis. 2023, 55, 102638. [Google Scholar] [CrossRef] [PubMed]
- Rtishchev, A.; Treshchalina, A.; Shustova, E.; Boravleva, E.; Gambaryan, A. An Outbreak of Newcastle Disease Virus in the Moscow Region in the Summer of 2022. Vet. Sci. 2023, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Ruenphet, S.; Jahangir, A.; Shoham, D.; Morikawa, K.; Miyoshi, Y.; Hanawa, E.; Okamura, M.; Nakamura, M.; Takehara, K. Surveillance and characterization of Newcastle disease viruses isolated from northern pintail (Anas acuta) in Japan during 2006–2009. Avian Dis. 2011, 55, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Mellor, P.S.; Hamblin, C. African horse sickness. Vet. Res. 2004, 35, 445–466. [Google Scholar] [CrossRef] [PubMed]
- Howell, P.G. The isolation and identification of further antigenic types of African horse sickness virus. Onderstepoort J. Vet. Res. 1962, 29, 139–149. [Google Scholar]
- McIntosh, B.M. Immunological types of horse sickness virus and their significance in immunization. Onderstepoort J. Vet. Res. 1958, 27, 465–536. [Google Scholar]
- Calisher, C.H.; Mertens, P.P. Taxonomy of African horse sickness viruses. In African Horse Sickness; Mellor, P.S., Baylis, M., Hamblin, C., Mertens, P.P.C., Calisher, C.H., Eds.; Springer: Vienna, Austria, 1998. [Google Scholar]
- Coetzer, J.A.W.; Guthrie, A.J. African horse sickness. In Infectious Diseases of Livestock, 2nd ed.; Coetzer, J.A.W., Tustin, R.C., Eds.; Oxford University Press: Cape Town, South Africa, 2004; pp. 1231–1246. [Google Scholar]
- Du Toit, R.M. The transmission of bluetongue and horse sickness by Culicoides. Onderstepoori J. Vet. Sci. Anim. Ind. 1944, 19, 7–16. [Google Scholar]
- Mellor, P.S.; Boorman, J.; Jennings, M. The multiplication of African horse-sickness virus in two species of Culicoides (Diptera, Ceratopogonidae). Arch. Virol. 1975, 47, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Boorman, J.; Mellor, P.S.; Penn, M.; Jennings, M. The growth of African horse-sickness virus in embryonated hen eggs and the transmission of virus by Culicoides variipennis Coquillett (Diptera, Ceratopogonidae). Arch. Virol. 1975, 47, 343–349. [Google Scholar] [CrossRef]
- Castillo-Olivares, J. African horse sickness in Thailand: Challenges of controlling an outbreak by vaccination. Equine Vet. J. 2021, 53, 9–14. [Google Scholar] [CrossRef]
- King, S.; Rajko-Nenow, P.; Ashby, M.; Frost, L.; Carpenter, S.; Batten, C. Outbreak of African horse sickness in Thailand. Transbound. Emerg. Dis. 2020, 67, 1764–1767. [Google Scholar]
- Lu, G.; Pan, J.; Ou, J.; Shao, R.; Hu, X.; Wang, C.; Li, S. African horse sickness: Its emergence in Thailand and a potential threat to other Asian countries. Transbound. Emerg. Dis. 2020, 67, 1751–1753. [Google Scholar] [CrossRef]
- Cardona-Ospina, J.A.; Villalba-Miranda, M.F.; Palechor-Ocampo, L.A.; Mancilla, L.I.; Sepulveda-Arias, J.C. A systematic review of FTA cards® as a tool for viral RNA preservation in fieldwork: Are they safe and effective? Prev. Vet. Med. 2019, 172, 104772. [Google Scholar] [CrossRef]
- Hashimoto, M.; Bando, M.; Kido, J.; Yokota, K.; Mita, T.; Kajimoto, K.; Kataoka, M. Nucleic acid purification from dried blood spot on FTA elute card provides template for polymerase chain reaction for high sensitive Plasmodium detection. Parasitol. Int. 2019, 73, 101941. [Google Scholar] [CrossRef]
- Liang, X.; Chigerwe, M.; Hietala, S.; Crossley, B.M. Evaluation of Fast Technology Analysis (FTA) cards as an improved method for specimen collection and shipment targeting viruses associated with Bovine respiratory disease complex. J. Virol. Methods 2014, 202, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Wannaratana, S.; Thontiravong, A.; Pakpinyo, S. Comparison of three paper-based devices for safety and stability of viral sample collection in poultry. Avain Pathol. 2021, 50, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Sakunde, D.; Kumar, R.R.; Mendiratta, S.; Gangwar, M.; Chauhan, P. Paper-based nucleic acid testing: A review. Pharma Innov. J. 2022; SP-11, 2067–2071. [Google Scholar]
- Abdelwhab, E.M.; Luschow, D.; Harder, T.C.; Hafez, H.M. The use of FTA® filter papers for diagnosis of avian influenza virus. J. Virol. Methods 2011, 174, 120–122. [Google Scholar] [CrossRef]
- Cortes, A.L.; Montiel, E.R.; Gimeno, I.M. Validation of Marek’s disease diagnosis and monitoring of Marek’s disease vaccines from samples collected in FTA® cards. Avian Dis. 2009, 53, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Ruenphet, S.; Punyadarsaniya, D.; Jantafong, T.; Takehara, K. Stability and virucidal efficacies using powder and liquid forms of fresh charcoal ash and slaked lime against Newcastle disease virus and Avian influenza virus. Vet. World 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Ruenphet, S.; Padiporn, K.; Punyadarsaniya, D.; Jantafong, T.; Takehara, K. Bactericidal and virucidal efficacies of food additive grade calcium hydroxide under various concentrations, organic material conditions, exposure duration, and its stability. Vet. World 2019, 12, 1383–1389. [Google Scholar] [CrossRef]
- Fouchier, R.A.; Bestebroer, T.M.; Herfst, S.; Van Der Kemp, D.; Rimmeizwaan, G.F.; Osterhaus, A.D. Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J. Clin. Microbiol. 2000, 38, 4096–4101. [Google Scholar] [CrossRef] [PubMed]
- Capua, I.; Alexander, D.J. Avian Influenza and Newcastle Disease: A Field and Laboratory Manual; Springer: Milan, Italy, 2009; p. 186. [Google Scholar]
- Zientara, S.; Sailleau, C.; Moulay, S.; Cruciere, C. Diagnosis of the African horse sickness virus serotype 4 by a one-tube, one manipulation RT-PCR reaction from an infected organ. J. Viral. Methods 1994, 46, 179–188. [Google Scholar] [CrossRef]
- Hsiao, K.M.; Lin, H.M.; Pan, H.; Li, T.C.; Chen, S.S.; Jou, S.B.; Chiu, Y.L.; Wu, M.F.; Lin, C.C.; Li, S.Y. Application of FTA sample collection and DNA purification system on the determination of CTG trinucleotide repeat size by PCR-based Southern blotting. J. Clin. Lab. Anal. 1999, 13, 188–193. [Google Scholar] [CrossRef]
- Smith, L.M.; Burgoyne, L.A. Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. BMC Ecol. 2004, 4, 4. [Google Scholar] [CrossRef]
- FTA Cards: High-Quality Media for Storage and Transport of DNA. 2015. Corpus ID: 39118393. Available online: https://www.semanticscholar.org/paper/FTA-cards-%3A-high-quality-media-for-storage-and-of-FTATMprovides/a0817c3b49b3db085c7596c3b9eba45169459467 (accessed on 18 April 2024).
- Reeve, B.W.P.; McFall, S.M.; Song, R.; Warren, R.; Steingart, K.R.; Theron, G. Commercial products to preserve specimens for tuberculosis diagnosis: A systematic review. Int. J. Tuberc. Lung Dis. 2018, 22, 741–753. [Google Scholar] [CrossRef]
- Dong, L.; Lin, C.; Li, L.; Wang, M.; Cui, J.; Feng, R.; Liu, B.; Wu, Z.; Lian, J.; Liao, G.; et al. An evaluation of clinical performance of FTA cards for HPV 16/18 detection using cobas 4800 HPV Test compared to dry swab and liquid medium. J. Clin. Virol. 2017, 94, 67–71. [Google Scholar] [CrossRef]
- Kraus, R.H.; van Hooft, P.; Waldenstrom, J.; Latorre-Margalef, N.; Ydenberg, R.C.; Prins, H.H. Avian influenza surveillance with FTA cards: Field methods, biosafety, and transportation issues solved. J. Vis. Exp. 2011, 54, 2832. [Google Scholar]
- Awad, F.; Baylis, M.; Jones, R.C.; Ganapathy, K. Evaluation of Flinders Technology Associates cards for storage and molecular detection of avian metapneumoviruses. Avian Pathol. 2014, 43, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Krambrich, J.; Bringeland, E.; Hesson, J.C.; Hoffman, T.; Lundkvist, A.; Lindahl, J.F.; Ling, J. Usage of FTA® Classic cards for Safe Storage, Shipment, and Detection of Arboviruses. Microorganisims 2022, 10, 1445. [Google Scholar] [CrossRef] [PubMed]
- Rattanamas, K.; Taesuji, M.; Kulthonggate, U.; Jantafong, T.; Mamom, T.; Ruenphet, S. Sensitivity of RNA viral nucleic acid-based detection of avian influenza virus, Newcastle disease virus, and African horse sickness virus on flinders technology associates card using conventional reverse-transcription polymerase chain reaction. Vet. World 2022, 15, 2754–2759. [Google Scholar] [CrossRef]
- Alexander, D.J. An overview of the epidemiology of avian influenza. Vaccine 2007, 25, 5637–5644. [Google Scholar] [CrossRef] [PubMed]
- Perozo, F.; Villegas, P.; Estevez, C.; Alvarado, I.; Purvis, L.B. Use of FTA® filter paper for the molecular detection of Newcastle disease virus. Avian Pathol. 2006, 35, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Kunanusont, N.; Taesuji, M.; Kulthonggate, U.; Rattanamas, K.; Mamom, T.; Thongsri, K.; Phannith, T.; Ruenphet, S. Longitudinal humoral immune response and maternal immunity in horses after a single live attenuated vaccination against AHS during the disease outbreak in Thailand. Vet. World 2023, 16, 1690–1694. [Google Scholar] [CrossRef] [PubMed]
- Bunpapong, N.; Charoenkul, K.; Nasamran, C.; Chamsai, E.; Udom, K.; Boonyapisitsopa, S.; Tantilertcharoen, R.; Kesdangsakonwut, S.; Techakriengkrai, N.; Suradhat, S.; et al. African Horse sickness virus serotype 1 on horse farm, Thailand, 2020. Emerg. Infect. Dis. 2021, 27, 2208–2211. [Google Scholar] [CrossRef] [PubMed]
Virus | Primer Name | Primer Sequence (5′ to 3′) | Target Gene | Amplicon Size (bp) | References |
---|---|---|---|---|---|
AIV | FluA-M52C_F | CTTCTAACCGAGGTCGAAACG | Matrix | 245 | Fouchier et al., 2000 [35] |
FluA-M253_R | AGGGCATTTTGGACAAAKCGTCTA | ||||
NDV | NOH_F | TACACCTCATCCCAGACAGG | Fusion | 305 | Capua and Alexader, 2009 [36] |
NOH_R | AGTCGGAGGATGTTGGCAGC | ||||
AHSV | AHSV_F7 | GTTAAAATTCGGTTAGGATG | Segment 7 | 1167 | Zientara et al., 1994 [37] |
AHSV_R7 | GTAAGTGTATTCGGTATTG |
Time | 1 dpi | 2 dpi | 3 dpi | 4 dpi | HA Test | |||||
---|---|---|---|---|---|---|---|---|---|---|
FTA | Filter Paper | FTA | Filter Paper | FTA | Filter Paper | FTA | Filter Paper | FTA | Filter Paper | |
30 min | − − − a | − − − | − − − | + + + b | − − − | + + + | − − − | + + + | − − − c | + + + d |
1 day | + b − − | − − − | + − − | − − − | + − − | − − − | + − − | − − − | − − − c | + + + d |
3 days | − − v | − − − | − − − | + b − − | − − − | + − − | − − − | + − − | − − − c | − − − c |
7 days | − − − | + − − | − − − | + b − − | − − − | + − − | − − − | + − − | − − − c | − − − c |
Dilution (log10) | Virus Titer (log10 EID50/mL) | Virus Titer on FTA (log10 EID50) | Tested Titer (log10 EID50) | Stability on FTA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 wk | 2 wk | 1 m | 2 m | 3 m | 4 m | 5 m | 6 m | ||||
0 | 9.17 | 8.17 | 6.17 | + | + | + | + | + | + | + | − |
1 | 8.17 | 7.17 | 5.17 | + | + | + | + | + | + | − | − |
2 | 7.17 | 6.17 | 4.17 | + | + | + | + | − | − | − | − |
3 | 6.17 | 5.17 | 3.17 | + | + | − | − | − | − | − | − |
4 | 5.17 | 4.17 | 2.17 | + | − | − | − | − | − | − | − |
5 | 4.17 | 3.17 | 1.17 | + | − | − | − | − | − | − | − |
6 | 3.17 | 2.17 | 0.17 | − | − | − | − | − | − | − | − |
7 | 2.17 | 1.17 | 0.017 | − | − | − | − | − | − | − | − |
8 | 1.17 | 0.17 | 0.0017 | − | − | − | − | − | − | − | − |
Dilution (log10) | Virus Titer (log10 ELD50/mL) | Virus Titer on FTA (log10 ELD50) | Tested Titer (log10 ELD50) | Stability on FTA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 wk | 2 wk | 1 m | 2 m | 3 m | 4 m | 5 m | 6 m | ||||
0 | 9.83 | 8.83 | 6.83 | + | + | + | + | + | + | + | − |
1 | 8.83 | 7.83 | 5.83 | + | + | + | + | + | + | + | − |
2 | 7.83 | 6.83 | 4.83 | + | + | + | + | + | − | − | − |
3 | 6.83 | 5.83 | 3.83 | + | + | + | + | + | − | − | − |
4 | 5.83 | 4.83 | 2.83 | + | − | − | − | − | − | − | − |
5 | 4.83 | 3.83 | 1.83 | − | − | − | − | − | − | − | − |
6 | 3.83 | 2.83 | 0.83 | − | − | − | − | − | − | − | − |
7 | 2.83 | 1.83 | 0.083 | − | − | − | − | − | − | − | − |
8 | 1.83 | 0.83 | 0.0083 | − | − | − | − | − | − | − | − |
Dilution (log10) | Virus Titer (log10 PFU/mL) | Virus Titer on FTA (log10 PFU) | Tested Titer (log10 PFU) | Stability on FTA | ||||
---|---|---|---|---|---|---|---|---|
1 wk | 2 wk | 1 m | 2 m | 3 m | ||||
0 | 6.00 | 5.00 | 4.01 | + | + | − | − | − |
1 | 5.00 | 4.00 | 3.01 | − | − | − | − | − |
2 | 4.00 | 3.00 | 2.01 | − | − | − | − | − |
3 | 3.00 | 2.00 | 1.01 | − | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taesuji, M.; Rattanamas, K.; Yim, P.B.; Ruenphet, S. Stability and Detection Limit of Avian Influenza, Newcastle Disease Virus, and African Horse Sickness Virus on Flinders Technology Associates Card by Conventional Polymerase Chain Reaction. Animals 2024, 14, 1242. https://doi.org/10.3390/ani14081242
Taesuji M, Rattanamas K, Yim PB, Ruenphet S. Stability and Detection Limit of Avian Influenza, Newcastle Disease Virus, and African Horse Sickness Virus on Flinders Technology Associates Card by Conventional Polymerase Chain Reaction. Animals. 2024; 14(8):1242. https://doi.org/10.3390/ani14081242
Chicago/Turabian StyleTaesuji, Machimaporn, Khate Rattanamas, Peter B. Yim, and Sakchai Ruenphet. 2024. "Stability and Detection Limit of Avian Influenza, Newcastle Disease Virus, and African Horse Sickness Virus on Flinders Technology Associates Card by Conventional Polymerase Chain Reaction" Animals 14, no. 8: 1242. https://doi.org/10.3390/ani14081242