In Vivo Prediction of Breast Muscle Weight in Broiler Chickens Using X-ray Images Based on Deep Learning and Machine Learning
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overall Process
2.2. Data Acquisition
2.3. Data Preprocessing
2.4. MAEFNet Segmentation Model
2.4.1. Encoder
2.4.2. Decoder
2.4.3. Setup
2.5. Breast Muscle Weight Prediction Model
2.6. Experimental Settings and Evaluation Metrics
3. Results
3.1. Comparison of Segmentation Models
3.2. Comparison of Weight Prediction Models
4. Discussion
4.1. Discussion of Data Processing
4.2. Discussion of the Evaluation Metrics
4.3. Discussion of MAEFNet
4.4. Discussion of Selected Features
4.5. Discussion of Weight Prediction Models
4.6. Discussion of the Proposed Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, L.; Wang, A.; Zhang, H.; Zhou, Q.; Chen, F.; Su, W.; Yu, A.; Ji, Z.; Liu, Q. Analysis of Chicken Breast Meat Freshness with an Electrochemical Approach. J. Electroanal. Chem. 2019, 855, 113622. [Google Scholar] [CrossRef]
- Hailemariam, A.; Esatu, W.; Abegaz, S.; Urge, M.; Assefa, G.; Dessie, T. Effect of Genotype and Sex on Breast Meat Quality Characteristics of Different Chickens. J. Agric. Food Res. 2022, 10, 100423. [Google Scholar] [CrossRef]
- Soro, A.B.; Botinestean, C.; Shokri, S.; Juge, A.; Hannon, S.; Whyte, P.; Bolton, D.J.; Bourke, P.; Poojary, M.M.; Tiwari, B.K. Comparison of the Impact of UV-Light Emitting Diode and UV Lamp at Pilot-Plant Scale Level on Quality Parameters and Consumer Perception of Fresh Chicken Meat. Food Chem. 2024, 434, 137397. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, E.J.; Caputo, V.; Nayga, R.M.; Meullenet, J.-F.; Ricke, S.C. Consumers’ Willingness to Pay for Organic Chicken Breast: Evidence from Choice Experiment. Food Qual. Prefer. 2011, 22, 603–613. [Google Scholar] [CrossRef]
- Erensoy, K.; Noubandiguim, M.; Cilavdaroglu, E.; Sarica, M.; Yamak, U.S. Correlations between Breast Yield and Morphometric Traits in Broiler Pure Lines. Braz. J. Poult. Sci. 2020, 22, 1–8. [Google Scholar] [CrossRef]
- Velleman, S.G. Broiler Breast Muscle Myopathies: Association with Satellite Cells. Poult. Sci. 2023, 102, 102917. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-T.; He, P.-G.; Jiang, J.-S.; Yang, Y.-F.; Wang, S.-Y.; Pan, C.-H.; Zeng, L.; He, Y.-F.; Chen, Z.-H.; Lin, H.-J.; et al. In Vivo Prediction of Abdominal Fat and Breast Muscle in Broiler Chicken Using Live Body Measurements Based on Machine Learning. Poult. Sci. 2023, 102, 102239. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, J.; An, B.; Ma, X.; Ying, F.; Kong, F.; Wen, J.; Zhao, G. Several Models Combined with Ultrasound Techniques to Predict Breast Muscle Weight in Broilers. Poult. Sci. 2023, 102, 102911. [Google Scholar] [CrossRef] [PubMed]
- Remignon, H.; Seigneurin, F.; Moati, F. In Vivo Assessment of the Quantity of Breast Muscle by Sonography in Broilers. Meat Sci. 2000, 56, 133–138. [Google Scholar] [CrossRef]
- Pewan, S.B.; Otto, J.R.; Huerlimann, R.; Budd, A.M.; Mwangi, F.W.; Edmunds, R.C.; Holman, B.W.B.; Henry, M.L.E.; Kinobe, R.T.; Adegboye, O.A.; et al. Next Generation Sequencing of Single Nucleotide Polymorphic DNA-Markers in Selecting for Intramuscular Fat, Fat Melting Point, Omega-3 Long-Chain Polyunsaturated Fatty Acids and Meat Eating Quality in Tattykeel Australian White MARGRA Lamb. Foods 2021, 10, 2288. [Google Scholar] [CrossRef]
- Franchi, M.V.; Raiteri, B.J.; Longo, S.; Sinha, S.; Narici, M.V.; Csapo, R. Muscle Architecture Assessment: Strengths, Shortcomings and New Frontiers of in Vivo Imaging Techniques. Ultrasound Med. Biol. 2018, 44, 2492–2504. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Mandal, C.C. Bioimaging: Usefulness in Modern Day Research. In Practical Approach to Mammalian Cell and Organ Culture; Mukherjee, T.K., Malik, P., Mukherjee, S., Eds.; Springer Nature: Singapore, 2023; pp. 1205–1230. ISBN 978-981-19173-1-8. [Google Scholar]
- Li, J.; Jiang, P.; An, Q.; Wang, G.-G.; Kong, H.-F. Medical Image Identification Methods: A Review. Comput. Biol. Med. 2024, 169, 107777. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Pinheiro, V.M.; Guedes, C.M.; Mourão, J.L. Prediction of Carcass and Breast Weights and Yields in Broiler Chickens Using Breast Volume Determined in Vivo by Real-Time Ultrasonic Measurement. Br. Poult. Sci. 2006, 47, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Rondón, E.O.; Parker, J.; Clemente-Hernández, S. Application of Real-Time Ultrasound Technology to Estimate in Vivo Breast Muscle Weight of Broiler Chickens. Br. Poult. Sci. 2007, 48, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Yaroshenko, A.; Hellbach, K.; Yildirim, A.Ö.; Conlon, T.M.; Fernandez, I.E.; Bech, M.; Velroyen, A.; Meinel, F.G.; Auweter, S.; Reiser, M.; et al. Improved In Vivo Assessment of Pulmonary Fibrosis in Mice Using X-ray Dark-Field Radiography. Sci. Rep. 2015, 5, 17492. [Google Scholar] [CrossRef] [PubMed]
- Hümmelchen, H.; Wagner, H.; Brügemann, K.; Wenisch, S.; König, S.; Wehrend, A. Frequency and Characterisation of Anomalies and Fractures of the Caudal Spine in Sheep with Undocked Tails. Animals 2023, 13, 1419. [Google Scholar] [CrossRef] [PubMed]
- Pereira, K.H.N.P.; Fuchs, K.d.M.; Terçariol, L.A.A.; Silva, R.C.; Camargo, G.d.A.; Mendonça, J.C.; Paulino, N.T.; Zone, M.A.; Oba, E.; Lourenço, M.L.G. Two Types of Management for the Noninvasive Treatment of Pectus Excavatum in Neonatal Puppies—Case Reports. Animals 2023, 13, 906. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Liu, D.; Zhang, G.; Ding, J.; He, Z.; Li, Q.; Liu, R.; Wen, J.; Zhao, G. Improve the Accuracy of Chicken Leg Disease Assessment by Combination of Gait Score and X-ray Scan. J. Appl. Poult. Res. 2023, 32, 100339. [Google Scholar] [CrossRef]
- Zhao, J.H.; Liu, M.H.; Shen, J.; Tu, D.C.; Yu, F. Study on Mass and Thickness Measurement of Chicken Meat Using X-ray Image. Appl. Mech. Mater. 2011, 39, 182–185. [Google Scholar] [CrossRef]
- Ide, Y.; Nakahara, T.; Nasu, M.; Matsunaga, S.; Iwanaga, T.; Tominaga, N.; Tamaki, Y. Postnatal Mandibular Cheek Tooth Development in the Miniature Pig Based on Two-Dimensional and Three-Dimensional X-ray Analyses. Anat. Rec. 2013, 296, 1247–1254. [Google Scholar] [CrossRef]
- Senol, D.; Bodur, F.; Secgın, Y.; Bakıcı, R.S.; Sahin, N.E.; Toy, S.; Öner, S.; Oner, Z. Sex Prediction with Morphometric Measurements of First and Fifth Metatarsal and Phalanx Obtained from X-ray Images by Using Machine Learning Algorithms. Folia. Morphol. 2023, 82, 704–711. [Google Scholar] [CrossRef]
- Pan, X.; Zhu, J.; Tai, W.; Fu, Y. An Automated Method to Quantify the Composition of Live Pigs Based on Computed Tomography Segmentation Using Deep Neural Networks. Comput. Electron. Agric. 2021, 183, 105987. [Google Scholar] [CrossRef]
- Kundu, R.; Das, R.; Geem, Z.W.; Han, G.-T.; Sarkar, R. Pneumonia Detection in Chest X-ray Images Using an Ensemble of Deep Learning Models. PLoS ONE 2021, 16, e0256630. [Google Scholar] [CrossRef]
- El Asnaoui, K.; Chawki, Y. Using X-ray Images and Deep Learning for Automated Detection of Coronavirus Disease. J. Biomol. Struct. Dyn. 2021, 39, 3615–3626. [Google Scholar] [CrossRef]
- Hardalaç, F.; Uysal, F.; Peker, O.; Çiçeklidağ, M.; Tolunay, T.; Tokgöz, N.; Kutbay, U.; Demirciler, B.; Mert, F. Fracture Detection in Wrist X-ray Images Using Deep Learning-Based Object Detection Models. Sensors 2022, 22, 1285. [Google Scholar] [CrossRef]
- Tran, T.-O.; Vo, T.H.; Le, N.Q.K. Omics-Based Deep Learning Approaches for Lung Cancer Decision-Making and Therapeutics Development. Brief Funct Genom. 2023, elad031. [Google Scholar] [CrossRef] [PubMed]
- Le, N.Q.K. Predicting Emerging Drug Interactions Using GNNs. Nat. Comput. Sci. 2023, 3, 1007–1008. [Google Scholar] [CrossRef] [PubMed]
- de Melo, M.J.; Goncalves, D.N.; Bonin Gomes, M.d.N.; Faria, G.; Silva, J.d.A.; Marques Ramos, A.P.; Osco, L.P.; Garcia Furuya, M.T.; Marcato Junior, J.; Goncalves, W.N. Automatic Segmentation of Cattle Rib-Eye Area in Ultrasound Images Using the UNet plus plus Deep Neural Network. Comput. Electron. Agric. 2022, 195, 106818. [Google Scholar] [CrossRef]
- Jeong, Y.; Sung, J. An Automated Deep Learning Method and Novel Cardiac Index to Detect Canine Cardiomegaly from Simple Radiography. Sci. Rep. 2022, 12, 14494. [Google Scholar] [CrossRef] [PubMed]
- Tempelaere, A.; Minh Phan, H.; Van De Looverbosch, T.; Verboven, P.; Nicolai, B. Non-Destructive Internal Disorder Segmentation in Pear Fruit by X-ray Radiography and AI. Comput. Electron. Agric. 2023, 212, 108142. [Google Scholar] [CrossRef]
- Chen, M.; Liao, J.; Zhu, D.; Zhou, H.; Zou, Y.; Zhang, S.; Liu, L. MCC-Net: A Class Attention-Enhanced Multi-Scale Model for Internal Structure Segmentation of Rice Seedling Stem. Comput. Electron. Agric. 2023, 207, 107717. [Google Scholar] [CrossRef]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.-C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. BiSeNet: Bilateral Segmentation Network for Real-Time Semantic Segmentation. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 334–349. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 20–25 June 2021; pp. 13708–13717. [Google Scholar]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Laudadio, V.; Tufarelli, V.; Dario, M.; D’Emilio, F.P.; Vicenti, A. Growth Performance and Carcass Characteristics of Female Turkeys as Affected by Feeding Programs. Poult. Sci. 2009, 88, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, J.; Duan, Q. Estimation for Fish Mass Using Image Analysis and Neural Network. Comput. Electron. Agric. 2020, 173, 105439. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Wang, Y. Performance Evaluation of Kernel Functions Based on Grid Search for Support Vector Regression. In Proceedings of the 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Siem Reap, Cambodia, 15–17 July 2015; pp. 283–288. [Google Scholar]
- Awad, M.; Khanna, R. Support Vector Regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Awad, M., Khanna, R., Eds.; Apress: Berkeley, CA, USA, 2015; pp. 67–80. ISBN 978-1-4302-5990-9. [Google Scholar]
- Meng, M.; Zhao, C. Application of Support Vector Machines to a Small-Sample Prediction. Adv. Petrole. Explor. Dev. 2015, 10, 72–75. [Google Scholar]
- Faridi, A.; Sakomura, N.K.; Golian, A.; Marcato, S.M. Predicting Body and Carcass Characteristics of 2 Broiler Chicken Strains Using Support Vector Regression and Neural Network Models. Poult. Sci. 2012, 91, 3286–3294. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.; Liu, G.; Zhang, C.; Zhang, J.; Yu, J.; Sun, Y. Predictability of Carcass Traits in Live Tan Sheep by Real-Time Ultrasound Technology with Least-Squares Support Vector Machines. Anim. Sci. J. 2022, 93, e13733. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 833–851. [Google Scholar]
- Canziani, A.; Paszke, A.; Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications. arXiv 2017, arXiv:1605.07678. [Google Scholar] [CrossRef]
- Jaeger, S.; Karargyris, A.; Candemir, S.; Folio, L.; Siegelman, J.; Callaghan, F.; Xue, Z.; Palaniappan, K.; Singh, R.K.; Antani, S.; et al. Automatic Tuberculosis Screening Using Chest Radiographs. IEEE Trans. Med. Imaging 2014, 33, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Candemir, S.; Jaeger, S.; Palaniappan, K.; Musco, J.P.; Singh, R.K.; Xue, Z.; Karargyris, A.; Antani, S.; Thoma, G.; McDonald, C.J. Lung Segmentation in Chest Radiographs Using Anatomical Atlases with Nonrigid Registration. IEEE Trans. Med. Imaging 2014, 33, 577–590. [Google Scholar] [CrossRef]
- Sotiropoulou, K.F.; Vavatsikos, A.P.; Botsaris, P.N. A Hybrid AHP-PROMETHEE II Onshore Wind Farms Multicriteria Suitability Analysis Using kNN and SVM Regression Models in Northeastern Greece. Renew. Energy 2024, 221, 119795. [Google Scholar] [CrossRef]
- Huiping, J.; Yaning, C.; Gonghuan, F.; Zhi, L.; Weili, D.; Qifei, Z. Adaptability of machine learning methods and hydrological models to discharge simulations in datasparse glaciated watersheds. J. Arid Land 2021, 13, 549–567. [Google Scholar] [CrossRef]
- Munguía Mondragón, J.C.; Rendón Lara, E.; Alejo Eleuterio, R.; Granda Gutirrez, E.E.; Del Razo López, F. Density-Based Clustering to Deal with Highly Imbalanced Data in Multi-Class Problems. Mathematics 2023, 11, 4008. [Google Scholar] [CrossRef]
- Alam, T.; Ahmed, C.F.; Zahin, S.A.; Khan, M.A.H.; Islam, M.T. An Effective Recursive Technique for Multi-Class Classification and Regression for Imbalanced Data. IEEE Access 2019, 7, 127615–127630. [Google Scholar] [CrossRef]
- Farkas, J.; Mohácsi-Farkas, C. History and Future of Food Irradiation. Trends Food Sci. Technol. 2011, 22, 121–126. [Google Scholar] [CrossRef]
- Schallier, S.; Li, C.; Lesuisse, J.; Janssens, G.P.J.; Everaert, N.; Buyse, J. Dual-Energy X-ray Absorptiometry Is a Reliable Non-Invasive Technique for Determining Whole Body Composition of Chickens. Poult. Sci. 2019, 98, 2652–2661. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Epochs | 100 |
Batch size | 8 |
Learning rate | 0.01 |
Optimizer | SGD |
Momentum | 0.9 |
Weight decay | 0.0001 |
Feature | Description | Symbol |
---|---|---|
Area | Square root of the number of pixels in the pectoral muscle | |
Convex area | Square root of the number of pixels in the convex hull of the pectoral muscle | |
Perimeter | Number of pixels in the pectoral muscle boundary | P |
Major axis length | Major axis length of an ellipse enclosing the pectoral muscle | Mal |
Minor axis length | Minor axis length of an ellipse enclosing the pectoral muscle | Mil |
Height | Height of the pectoral muscle | H |
Width | Width of the pectoral muscle | W |
Rectangle area | Square root of the product of the pectoral muscle height and width | Ra = |
Ellipticity | Ratio of the major axis length to the minor axis length | El = Mal/Mil |
Diameter | Diameter of a circumscribed circle of the pectoral muscle | D |
Equivalent diameter | Diameter of a circle equal to the area of the pectoral muscle | Ed = |
Heywood circularity factor | Degree to which the pectoral muscle is close to the circle | Hcf = P/(2) |
Aspect | Ratio of the height to the width of the pectoral muscle | As = H/W |
Curvature | Ratio of the pectoral muscle area to the circumscribed circle area | Cu = 4∗A/(π∗D2) |
Complexity | Ratio of a square of the perimeter to the pectoral muscle area | Cl = P2/A |
Configuration | Parameter |
---|---|
Operating system | Windows 10 |
CPU | Intel Core i9-13900K |
GPU | NVIDIA GeForce RTX 4090 |
Development language | Python 3.10 |
Framework | PyTorch 1.12 + OpenCV 4.8+ Scikit-learn 1.2 |
CUDA version | CUDA 12.1 |
Model | Pre (%) | IoU (%) | Rec (%) | DSC (%) | Params (M) | Latency (ms) |
---|---|---|---|---|---|---|
UNet | 97.66 | 95.70 | 97.95 | 97.84 | 17.26 | 13.26 |
TransUNet | 97.42 | 95.52 | 98.00 | 97.73 | 77.37 | 11.19 |
DeepLabV3Plus | 97.09 | 95.44 | 98.26 | 97.69 | 39.76 | 9.68 |
BiSeNet | 97.57 | 95.56 | 97.89 | 97.76 | 11.89 | 4.01 |
LR-ASPP | 97.38 | 95.34 | 97.85 | 97.65 | 3.22 | 3.68 |
Ours | 97.89 | 96.35 | 98.40 | 98.15 | 1.51 | 4.75 |
Model | Without Feature Selection | With Feature Selection | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | MRE (%) | R2 | RMSE | MAE | MRE (%) | |
KNN | 0.7833 | 35.11 | 27.02 | 4.888 | 0.7891 | 34.84 | 26.73 | 4.738 |
DT | 0.7378 | 38.38 | 31.48 | 5.680 | 0.7539 | 37.54 | 30.68 | 5.601 |
RF | 0.8276 | 31.32 | 25.38 | 4.562 | 0.8409 | 30.22 | 24.20 | 4.320 |
ADBoost | 0.8003 | 33.82 | 27.66 | 4.968 | 0.8358 | 30.75 | 24.45 | 4.374 |
XGBoost | 0.7954 | 34.28 | 27.59 | 4.900 | 0.7984 | 33.85 | 27.04 | 4.794 |
SVR | 0.8429 | 29.68 | 24.20 | 4.323 | 0.8810 | 25.38 | 20.48 | 3.668 |
Backbone | Pre (%) | IoU (%) | Rec (%) | DSC (%) | Params (M) | Latency (ms) |
---|---|---|---|---|---|---|
ResNet50 | 96.65 | 94.77 | 97.98 | 97.34 | 26.65 | 13.77 |
VGG16 | 95.88 | 93.67 | 97.60 | 96.82 | 8.46 | 8.66 |
Xception | 96.83 | 94.64 | 97.67 | 97.29 | 23.66 | 5.92 |
Ours | 97.89 | 96.35 | 98.40 | 98.15 | 1.51 | 4.75 |
MobileNetV3 | PMobileNetV3 | ARM | CAM | FFM | IoU (%) | DSC (%) |
---|---|---|---|---|---|---|
√ | - | - | - | - | 95.68 | 97.80 |
- | √ | - | - | - | 95.83 | 97.89 |
- | √ | √ | - | - | 96.06 | 98.00 |
- | √ | √ | √ | - | 96.17 | 98.07 |
- | √ | √ | √ | √ | 96.35 | 98.15 |
Model | Pre (%) | IoU (%) | Rec (%) | DSC (%) |
---|---|---|---|---|
UNet | 94.69 | 91.42 | 96.36 | 95.40 |
TransUNet | 94.26 | 91.01 | 96.35 | 95.15 |
DeepLabV3Plus | 93.48 | 90.08 | 96.12 | 94.47 |
BiSeNet | 92.87 | 90.04 | 96.73 | 94.61 |
LR-ASPP | 92.56 | 89.04 | 95.89 | 94.01 |
Ours | 96.60 | 91.62 | 94.67 | 95.53 |
Step | Time |
---|---|
Scan X-ray image | approximately 20 s |
Get live weight | approximately 10 s |
Preprocess image | 9.34 ms |
Segment image | 4.75 ms |
Predict breast muscle weight | 1.30 ms |
All procedures | approximately 30 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, R.; Li, J.; Yang, J.; Sun, R.; Yu, K. In Vivo Prediction of Breast Muscle Weight in Broiler Chickens Using X-ray Images Based on Deep Learning and Machine Learning. Animals 2024, 14, 628. https://doi.org/10.3390/ani14040628
Zhu R, Li J, Yang J, Sun R, Yu K. In Vivo Prediction of Breast Muscle Weight in Broiler Chickens Using X-ray Images Based on Deep Learning and Machine Learning. Animals. 2024; 14(4):628. https://doi.org/10.3390/ani14040628
Chicago/Turabian StyleZhu, Rui, Jiayao Li, Junyan Yang, Ruizhi Sun, and Kun Yu. 2024. "In Vivo Prediction of Breast Muscle Weight in Broiler Chickens Using X-ray Images Based on Deep Learning and Machine Learning" Animals 14, no. 4: 628. https://doi.org/10.3390/ani14040628