Milk Yields and Milk Fat Composition Promoted by Pantothenate and Thiamine via Stimulating Nutrient Digestion and Fatty Acid Synthesis in Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management, Experimental Design, and Diets
2.2. Measurement and Sample Collection of Feed and Milk
2.3. Ruminal Fermentation
2.4. Total Tract Apparent Nutrient Digestion Assay
2.5. Blood Metabolites
2.6. Mammary Tissue Sampling
2.7. Chemical Analyses
2.8. RNA Extraction from the Mammary Gland and Quantitative Real-Time PCR Analysis
2.9. Statistical Analyses
3. Results
3.1. DM Intake, Milk Yields, Milk Composition and Feed Efficiency
3.2. Digestibility Coefficient and Rumen Fermentation
3.3. Blood Metabolites
3.4. The Relative mRNA Expressions of Genes Involved in Milk Fatty Acids Synthesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ball, G.F.M. Pantothenic acid. In Vitamins in Foods; Ball, G.F.M., Ed.; Bioavailability and Stability; CRC Press: Boca Raton, FL, USA, 2006; pp. 211–219. [Google Scholar]
- Liu, Q.; Wang, C.; Li, H.Q.; Guo, G.; Huo, W.J.; Zhang, S.L.; Zhang, Y.L.; Pei, C.X.; Wang, H. Effects of dietary protein level and rumen-protected pantothenate on nutrient digestibility, nitrogen balance, blood metabolites and growth performance in beef calves. J. Anim. Feed Sci. 2018, 27, 202–210. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Li, H.Q.; Guo, G.; Huo, W.J.; Pei, C.X.; Zhang, S.L.; Wang, H. Effects of dietary protein levels and rumen-protected pantothenate on ruminal fermentation, microbial enzyme activity and bacteria population in Blonde d’Aquitaine×Simmental beef steers. Anim. Feed Sci. Technol. 2017, 232, 31–39. [Google Scholar] [CrossRef]
- Ragaller, V.; Lebzien, P.; Sdekum, K.H.; Hther, L.; Flachowsky, G. Effects of a pantothenic acid supplementation to different rations on ruminal fermentation, nutrient flow at the duodenum, and on blood and milk variables of dairy cows. J. Anim. Physiol. Anim. Nutr. 2011, 95, 730–743. [Google Scholar] [CrossRef]
- Wolin, M.J.; Miller, T.L.; Stewart, C.S. Microbe-microbe interactions. In The Rumen Microbial Ecosystem; Hobson, P.N., Stewart, C.S., Eds.; Blackie Academic & Professional: London, UK, 1997; pp. 478–481. [Google Scholar]
- Karapinar, T.; Dabak, M.; Kizil, O. Thiamine status of feedlot cattle fed a high-concentrate diet. Can. Vet. J. 2010, 51, 1251–1253. [Google Scholar] [CrossRef]
- Pan, X.H.; Yang, L.; Xue, F.G.; Xin, H.R.; Jiang, L.S.; Xiong, B.H.; Beckers, Y. Relationship between thiamine and subacute ruminal acidosis induced by a high-grain diet in dairy cows. J. Dairy Sci. 2016, 99, 8790–8801. [Google Scholar] [CrossRef] [Green Version]
- Xue, F.G.; Nan, X.M.; Sun, F.Y.; Pan, X.H.; Guo, Y.M.; Jiang, L.S.; Xiong, B.H. Metagenome sequencing to analyze the impacts of thiamine supplementation on ruminal fungi in dairy cows fed high-concentrate diets. AMB Express. 2018, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.H.; Yang, L.; Beckers, Y.; Xue, F.G.; Tang, Z.W.; Jiang, L.S.; Xiong, B.H. Thiamine supplementation facilitates thiamine transporter expression in the rumen epithelium and attenuates high-grain-induced inflammation in low-yielding dairy cows. J. Dairy Sci. 2017, 100, 5329–5342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santschi, D.E.; Chiquette, J.; Berthiaume, R.; Martineau, R.; Matte, J.J.; Mustafa, A.F.; Girard, C.L. Effects of the forage to concentrate ratio on B-vitamin concentrations in different ruminal fractions of dairy cows. Can. J. Anim. Sci. 2005, 85, 389–399. [Google Scholar] [CrossRef]
- Webster, M. Physiological and performance responses to supplementation with thiamin and pantothenic acid derivatives. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 77, 486–491. [Google Scholar] [CrossRef]
- Tahiliani, A.G.; Beinlich, C.J. Pantothenic acid in health and disease. Vitam. Horm. 1991, 46, 165–228. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Li, H.Q.; Wu, X.X.; Guo, G.; Huo, W.J.; Pei, C.X.; Zhang, Y.L.; Zhang, S.L. Effects of rumen-protected pantothenate supplementation on lactation performance, ruminal fermentation, nutrient digestion and blood metabolites in dairy cows. J. Sci. Food Agric. 2018, 98, 2098–2104. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Dairy Cattle, 7th revised ed.; Subcommittee on Dairy Cattle Nutrition, Committee on Animal Nutrition, and Board on Agriculture and Natural Resources; National Academy of Sciences: Washington, DC, USA, 2001; pp. 214–233. [Google Scholar]
- Farr, V.C.; Stelwagen, K.; Cate, L.R.; Molenaar, A.J.; McFadden, T.B.; Davis, S.R. An improved method for the routine biopsy of bovine mammary tissue. J. Dairy Sci. 1996, 79, 543–549. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Chouinard, P.Y.; Corneau, L.; Barbano, D.M.; Metzger, L.E.; Bauman, D.E. Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. J. Nutr. 1999, 129, 1579–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, M.S. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef]
- Sheng, S.; Yan, S.M.; Qi, L.Z.; Zhao, Y.L.; Jin, L.; Guo, X.Y. Effect of the ratios of acetate and β-hydroxybutyrate on the expression of milk fat- and protein-related genes in bovine mammary epithelial cells. Czech J. Anim. Sci. 2015, 60, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wang, C.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L.; Li, H.Q.; Guo, G.; Huo, W.J.; Yang, W.Z.; Wang, H. Effects of 2-methybutyrate supplementation on growth performance and ruminal development in pre- and post-weaned dairy calves. Anim. Feed Sci. Technol. 2016, 216, 129–137. [Google Scholar] [CrossRef]
- Maxin, G.; Glasser, F.; Hurtaud, C.; Peyraud, J.; Rulquin, H. Combined effects of trans-10, cis-12 conjugated linoleic acid, propionate, and acetate on milk fat yield and composition in dairy cows. J. Dairy Sci. 2011, 94, 2051–2059. [Google Scholar] [CrossRef]
- Bernard, L.; Leroux, C.; Chilliard, Y. Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv. Exp. Med. Biol. 2008, 606, 67–108. [Google Scholar] [CrossRef]
- Bryant, M.; Robinson, I.M. Some nutritional requirements of the genus Ruminococcus. Appl. Microbiol. 1961, 9, 91–95. [Google Scholar] [CrossRef]
- Ungerfeld, E.M.; Rust, S.R.; Burnett, R. The effects of thiamine inhibition on ruminal fermentation: A preliminary study. Folia Microbiol. 2009, 54, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.F.; Dai, J.Y.; Lu, Z.B.; Debra, D.M. The phosphonopyruvate decarboxylase from Bacteroides fragilis. J. Biol. Chem. 2003, 278, 41302–41308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, J.B. Rumen Microbiology and Its Role in Ruminant Nutrition; Cornell University Press: Ithaca, NY, USA, 2002. [Google Scholar]
- Bonomi, A. Dairy cattle ration integration with rumen-protected pantothenic acid: Effects on milk production and reproductive efficiency. Riv. Discienza Dell’alimentazione 2000, 29, 321–338. [Google Scholar]
- Hall, M.B.; Mertens, D.R. A 100-year review: Carbohydrates-characterization, digestion, and utilization. J. Dairy Sci. 2017, 100, 10078–10093. [Google Scholar] [CrossRef] [Green Version]
- Lohakare, J.D.; Pattanaik, A.K.; Khan, S.A. Effect of dietary protein levels on the performance, nutrient balances, metabolic profile and thyroid hormones of crossbred calves. Asian-Aust. J. Anim. Sci. 2006, 19, 1588–1596. [Google Scholar] [CrossRef]
- Danfaer, A.; Tetens, V.; Agergaard, N. Review and an experimental study on the physiological and quantitative aspects of gluconeogenesis in lactating ruminants. Comp. Biochem. Phys. B. 1995, 111, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Solouma, G.M.; Kholif, A.M.; Hamdon, H.A.; Aziz, H.A.; El-Shewy, A.A. Blood components and milk production as affected by supplementing ration with thiamin in ewe Sohagi sheep. Life Sci. J. 2014, 11, 655–665. [Google Scholar]
- Rowghani, E.; Zamiri, M.J.; Ebrahimi, S.R. Effects of monensin and thiamin and their combinations on feedlot performance, blood glucose, BUN levels and carcass characteristics of Mehraban lambs fed a high concentrate diet. Pak. J. Biol. Sci. 2006, 9, 2835–2840. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genom. 2008, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.L.; Guo, X.Y.; Yan, S.M.; Shi, B.L.; Sheng, R. Acetate regulates milk fat synthesis through the mammalian target of rapamycin/eukaryotic initiation factor 4E signaling pathway in bovine mammary epithelial cells. J. Dairy Sci. 2021, 104, 337–345. [Google Scholar] [CrossRef]
Ingredients | Contents [%] |
---|---|
Corn fodder | 25.5 |
Alfalfa hay | 11.8 |
Oat hay | 12.7 |
Corn grain, ground | 25.7 |
Wheat bran | 6.0 |
Soybean meal | 9.0 |
Rapeseed meal | 2.5 |
Cottonseed cake | 5.0 |
Calcium carbonate | 0.5 |
Salt | 0.5 |
Dicalcium phosphate | 0.3 |
Mineral and vitamin premix 1 | 0.5 |
Chemical composition | |
Organic matter | 94.5 |
Crude protein | 16.4 |
Ether extract | 3.25 |
Neutral detergent fiber | 31.4 |
Acid detergent fiber | 19.5 |
Non-fiber carbohydrate 2 | 43.5 |
Calcium | 0.71 |
Phosphorus | 0.45 |
Gene | Primer Sequence (5’-3’) | GenBank Accession No. | Annealing Temperature (°C) | Size (bp) |
---|---|---|---|---|
ACACA | F: CATCTTGTCCGAAACGTCGAT R: CCCTTCGAACATACACCTCCA | AJ132890 | 58 | 101 |
FASN | F: AGGACCTCGTGAAGGCTGTGA R: CCAAGGTCTGAAAGCGAGCTG | NM001012669 | 62 | 85 |
SCD | F: TCCTGTTGTTGTGCTTCATCC R: GGCATAACGGAATAAGGTGGC | AY241933 | 58 | 101 |
PPARγ | F: AACTCCCTCATGGCCATTGAATG R: AGGTCAGCAGACTCTGGGTTC | NM181024.2 | 60 | 323 |
SREBF1 | F: CTGACGACCGTGAAAACAGA R: AGACGGCAGATTTATTCAACTT | NM001113302 | 60 | 334 |
FABP3 | F: GAACTCGACTCCCAGCTTGAA R: AAGCCTACCACAATCATCGAAG | DN518905 | 60 | 102 |
LPL | F: ACACAGCTGAGGACACTTGCC R: GCCATGGATCACCACAAAGG | BC118091 | 60 | 101 |
GAPDH | F: CCTGGAGAAACCTGCCAAGT R: AGCCGTATTCATTGTCATACCA | NM001034034.2 | 59 | 215 |
Item | CCP− 1 | CCP+ | p-Values 2 | |||||
---|---|---|---|---|---|---|---|---|
CT− | CT+ | CT− | CT+ | SEM | CCP | CT | CCP × CT | |
DM intake (kg/d) | 22.3 | 22.8 | 23.2 | 24.0 | 0.17 | 0.012 | 0.008 | 0.060 |
Milk production (kg/d) | ||||||||
Actual | 35.6 | 39.2 | 38.5 | 42.5 | 0.36 | 0.002 | 0.009 | 0.17 |
Fat-corrected milk 3 | 32.1 | 35.9 | 35.2 | 39.9 | 0.39 | 0.004 | 0.005 | 0.13 |
Energy-corrected milk 4 | 34.6 | 38.6 | 37.7 | 41.0 | 0.38 | 0.006 | 0.008 | 0.12 |
Fat | 1.19 | 1.35 | 1.32 | 1.40 | 0.019 | 0.006 | 0.011 | 0.16 |
True protein | 1.10 | 1.21 | 1.16 | 1.30 | 0.013 | 0.004 | 0.009 | 0.62 |
Lactose | 1.83 | 2.03 | 1.93 | 2.20 | 0.020 | 0.003 | 0.006 | 0.37 |
Milk composition (g/kg) | ||||||||
Fat | 3.33 | 3.45 | 3.42 | 3.59 | 0.034 | 0.089 | 0.037 | 0.71 |
True protein | 3.08 | 3.09 | 3.13 | 3.06 | 0.019 | 0.85 | 0.41 | 0.30 |
Lactose | 5.15 | 5.16 | 5.23 | 5.19 | 0.017 | 0.15 | 0.61 | 0.42 |
Feed efficiency (kg/kg) | ||||||||
Milk/DM intake | 1.59 | 1.71 | 1.66 | 1.77 | 0.003 | 0.006 | 0.007 | 0.23 |
ECM/DM intake | 1.55 | 1.69 | 1.62 | 1.71 | 0.002 | 0.008 | 0.011 | 0.19 |
Item | CCP− 1 | CCP+ | p-Values 2 | |||||
---|---|---|---|---|---|---|---|---|
CT− | CT+ | CT− | CT+ | SEM | CCP | CT | CCP × CT | |
C4:0 | 20.1 | 21.2 | 21.4 | 22.3 | 0.25 | 0.41 | 0.39 | 0.62 |
C6:0 | 21.5 | 22.6 | 22.7 | 23.6 | 0.36 | 0.70 | 0.51 | 0.33 |
C8:0 | 12.3 | 13.3 | 13.2 | 14.4 | 0.15 | 0.31 | 0.41 | 0.62 |
C10:0 | 25.9 | 26.7 | 26.1 | 27.5 | 0.47 | 0.38 | 0.38 | 0.53 |
C11:0 | 2.9 | 3.6 | 3.8 | 4.5 | 0.05 | 0.019 | 0.027 | 0.30 |
C12:0 | 33.3 | 35.3 | 36.1 | 38.1 | 1.05 | 0.047 | 0.031 | 0.61 |
C13:0 | 2.8 | 3.5 | 3.6 | 3.8 | 0.09 | 0.029 | 0.031 | 0.15 |
C14:0 | 110.1 | 116.6 | 118.7 | 126.2 | 1.06 | 0.041 | 0.030 | 0.051 |
C15:0 | 24.7 | 26.0 | 26.5 | 28.4 | 1.75 | 0.039 | 0.043 | 0.18 |
C16:0 | 57.8 | 62.1 | 61.5 | 63.2 | 1.85 | 0.045 | 0.038 | 0.55 |
C17:0 | 20.2 | 20.0 | 20.1 | 20.8 | 0.38 | 0.42 | 0.52 | 0.57 |
C18:0 | 71.2 | 70.3 | 73.2 | 70.1 | 2.24 | 0.19 | 0.24 | 0.86 |
C20:0 | 5.3 | 5.2 | 5.1 | 4.9 | 0.10 | 0.30 | 0.45 | 0.69 |
C21:0 | 0.8 | 0.75 | 0.8 | 0.9 | 0.02 | 0.47 | 0.53 | 0.99 |
C22:0 | 1.4 | 1.3 | 1.4 | 1.4 | 0.03 | 0.52 | 0.62 | 0.75 |
C23:0 | 0.6 | 0.6 | 0.6 | 0.7 | 0.02 | 0.70 | 0.65 | 0.84 |
C24:0 | 1.2 | 1.4 | 1.5 | 1.5 | 0.03 | 0.045 | 0.036 | 0.46 |
SFA 3 | 412.15 | 430.55 | 436.29 | 452.35 | 9.32 | 0.026 | 0.037 | 0.41 |
Item | CCP− 1 | CCP+ | p-Values 2 | |||||
---|---|---|---|---|---|---|---|---|
CT− | CT+ | CT− | CT+ | SEM | CCP | CT | CCP × CT | |
C14:1 | 4.17 | 4.8 | 5.6 | 6.3 | 0.84 | 0.002 | 0.004 | 0.068 |
C15:1 | 5.56 | 6.0 | 6.21 | 6.7 | 0.01 | 0.041 | 0.033 | 0.39 |
C16:1 | 74.5 | 77.8 | 78.0 | 83.4 | 1.55 | 0.010 | 0.039 | 0.078 |
C18:1 | 225.0 | 213.0 | 204.0 | 208.0 | 7.28 | 0.081 | 0.079 | 0.89 |
C20:1 | 2.4 | 2.7 | 2.6 | 3.1 | 0.05 | 0.58 | 0.31 | 0.10 |
C22:1 | 0.7 | 0.8 | 0.8 | 0.9 | 0.02 | 0.103 | 0.19 | 0.20 |
C24:1 | 0.7 | 0.9 | 0.9 | 1.1 | 0.02 | 0.032 | 0.021 | 0.085 |
C18:2 (cis-9,12) | 116.2 | 109.0 | 110.0 | 95.6 | 2.23 | 0.059 | 0.061 | 0.317 |
C18:2 (trans-9,12) | 104.0 | 103.8 | 102.7 | 91.4 | 1.62 | 0.10 | 0.12 | 0.20 |
C18:2 (cis-9,11) | 5.5 | 5.7 | 5.3 | 5.3 | 0.23 | 0.52 | 0.60 | 0.71 |
C18:2(trans-10, cis-12) | 9.4 | 9.3 | 9.2 | 9.4 | 0.37 | 0.49 | 0.51 | 0.82 |
C18:3 (cis-6,9,12) | 1.6 | 1.4 | 1.7 | 1.5 | 0.04 | 0.70 | 0.82 | 0.99 |
C18:3 (cis-9,12,15) | 11.3 | 11.2 | 11.1 | 10.2 | 0.23 | 0.50 | 0.60 | 0.14 |
C20:2 | 1.4 | 1.5 | 1.5 | 1.5 | 0.03 | 0.64 | 0.58 | 0.23 |
C20:3 (cis-8,11,14) | 6.6 | 5.9 | 6.1 | 5.4 | 0.13 | 0.43 | 0.54 | 0.081 |
C20:3 (cis-11,14,17) | 0.4 | 0.4 | 0.5 | 0.5 | 0.01 | 0.39 | 0.47 | 0.59 |
C20:4 | 9.1 | 9.6 | 10.1 | 9.2 | 0.18 | 0.54 | 0.62 | 0.19 |
C20:5 | 1.1 | 1.1 | 1.3 | 1.3 | 0.03 | 0.71 | 0.97 | 0.89 |
C22:2 | 0.3 | 0.3 | 0.3 | 0.5 | 0.01 | 0.11 | 0.061 | 0.11 |
C22:3 | 0.3 | 0.4 | 0.3 | 0.5 | 0.01 | 0.23 | 0.31 | 0.13 |
C22:4 | 2.2 | 2.5 | 2.6 | 2.6 | 0.05 | 0.10 | 0.098 | 0.99 |
C22:5 (cis-4,7,10,13,16) | 0.2 | 0.2 | 0.3 | 0.2 | 0.01 | 0.47 | 0.50 | 0.10 |
C22:5 (cis-7,10,13,16,19) | 2.7 | 2.8 | 2.9 | 2.8 | 0.06 | 0.53 | 0.48 | 0.99 |
C22:6 | 0.5 | 0.7 | 0.6 | 0.5 | 0.02 | 0.19 | 0.35 | 0.18 |
UFA 3 | 587.8 | 569.7 | 563.6 | 547.9 | 14.28 | 0.024 | 0.036 | 0.57 |
C4-16 | 397.6 | 417.6 | 423.3 | 448.4 | 10.33 | 0.029 | 0.038 | 0.63 |
C17-24 | 602.3 | 582.65 | 576.52 | 551.8 | 11.46 | 0.031 | 0.031 | 0.52 |
Item | CCP− 1 | CCP+ | p-Values 2 | |||||
---|---|---|---|---|---|---|---|---|
CT− | CT+ | CT− | CT+ | SEM | CCP | CT | CCP × CT | |
Digestibility coefficient | ||||||||
Dry matter | 0.665 | 0.701 | 0.703 | 0.731 | 0.002 | 0.013 | 0.023 | 0.23 |
Organic matter | 0.684 | 0.715 | 0.717 | 0.744 | 0.002 | 0.022 | 0.018 | 0.57 |
Crude protein | 0.742 | 0.778 | 0.769 | 0.791 | 0.004 | 0.034 | 0.003 | 0.45 |
Ether extract | 0.757 | 0.788 | 0.815 | 0.832 | 0.011 | 0.024 | 0.25 | 0.74 |
Neutral detergent fiber | 0.561 | 0.598 | 0.605 | 0.640 | 0.003 | 0.016 | 0.026 | 0.87 |
Acid detergent fiber | 0.498 | 0.538 | 0.551 | 0.584 | 0.004 | 0.033 | 0.014 | 0.59 |
Non-fiber carbohydrate | 0.797 | 0.817 | 0.813 | 0.835 | 0.004 | 0.042 | 0.012 | 0.93 |
Ruminal fermentation | ||||||||
pH | 6.90 | 6.43 | 6.67 | 6.36 | 0.025 | 0.006 | 0.015 | 0.14 |
Total VFA (mM) | 118 | 132 | 130 | 137 | 0.379 | 0.024 | 0.032 | 0.027 |
Mol/100 mol | ||||||||
Acetate | 62.9 | 64.4 | 63.9 | 64.3 | 0.09 | 0.083 | 0.004 | 0.069 |
Propionate | 24.1 | 22.6 | 23.4 | 22.0 | 0.08 | 0.008 | 0.006 | 0.36 |
Butyrate | 10.3 | 10.1 | 9.8 | 10.6 | 0.05 | 0.94 | 0.10 | 0.12 |
Valerate | 1.29 | 1.36 | 1.38 | 1.44 | 0.015 | 0.18 | 0.32 | 0.96 |
Isobutyrate | 0.52 | 0.54 | 0.56 | 0.62 | 0.015 | 0.47 | 0.22 | 0.42 |
Isovalerate | 0.77 | 0.82 | 0.83 | 0.87 | 0.021 | 0.21 | 0.30 | 0.93 |
Acetate:Propionate | 2.62 | 2.86 | 2.75 | 2.92 | 0.012 | 0.005 | 0.007 | 0.046 |
Ammoniacal N (mg 100/mL) | 13.2 | 11.6 | 12.4 | 9.5 | 0.13 | 0.008 | 0.009 | 0.010 |
Item | CCP− 1 | CCP+ | p-Values 2 | |||||
---|---|---|---|---|---|---|---|---|
CT− | CT+ | CT− | CT+ | SEM | CCP | CT | CCP × CT | |
Glucose (mmol/L) | 24.9 | 26.8 | 26.4 | 28.5 | 2.51 | 0.005 | 0.002 | 0.012 |
Total protein (g/L) | 78.4 | 83.5 | 83.1 | 84.4 | 7.58 | 0.001 | 0.73 | 0.092 |
Albumin (g/L) | 29.5 | 33.9 | 32.5 | 34.8 | 2.84 | 0.004 | 0.11 | 0.13 |
Triglyceride (mmol/L) | 5.46 | 5.51 | 5.49 | 5.54 | 0.077 | 0.004 | 0.007 | 0.12 |
IGF-1 3 (ng/mL) | 282.4 | 313.1 | 308.3 | 316.3 | 2.89 | 0.012 | 0.019 | 0.28 |
T-AOC 4 (U/mL) | 5.79 | 6.31 | 6.52 | 6.88 | 0.075 | 0.001 | 0.007 | 0.61 |
Pantothenate (μg/mL) | 0.23 | 0.24 | 0.26 | 0.27 | 0.003 | 0.012 | 0.83 | 0.13 |
Thiamine (μg/L) | 24.6 | 33.3 | 27.0 | 34.6 | 2.65 | 0.74 | 0.025 | 0.21 |
Item 3 | CCP− 1 | CCP+ | p-Values 2 | |||||
---|---|---|---|---|---|---|---|---|
CT− | CT+ | CT− | CT+ | SEM | CCP | CT | CCP × CT | |
PPARγ | 1.00 | 1.42 | 1.56 | 2.03 | 0.036 | 0.021 | 0.036 | 0.34 |
SREBF1 | 1.01 | 1.69 | 1.70 | 2.31 | 0.026 | 0.019 | 0.035 | 0.22 |
ACACA | 1.00 | 1.45 | 1.53 | 2.05 | 0.029 | 0.036 | 0.048 | 0.22 |
FASN | 1.00 | 1.59 | 1.56 | 2.26 | 0.027 | 0.018 | 0.015 | 0.54 |
SCD | 1.05 | 1.50 | 1.55 | 2.07 | 0.017 | 0.023 | 0.034 | 0.26 |
FABP3 | 1.00 | 1.69 | 1.66 | 2.12 | 0.035 | 0.019 | 0.013 | 0.31 |
LPL | 1.03 | 1.35 | 1.41 | 1.76 | 0.018 | 0.051 | 0.027 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, Y.; Bu, L.; Liu, Q.; Pei, C.; Guo, G.; Huo, W. Milk Yields and Milk Fat Composition Promoted by Pantothenate and Thiamine via Stimulating Nutrient Digestion and Fatty Acid Synthesis in Dairy Cows. Animals 2023, 13, 2526. https://doi.org/10.3390/ani13152526
Zhang J, Liu Y, Bu L, Liu Q, Pei C, Guo G, Huo W. Milk Yields and Milk Fat Composition Promoted by Pantothenate and Thiamine via Stimulating Nutrient Digestion and Fatty Acid Synthesis in Dairy Cows. Animals. 2023; 13(15):2526. https://doi.org/10.3390/ani13152526
Chicago/Turabian StyleZhang, Jing, Yapeng Liu, Lijun Bu, Qiang Liu, Caixia Pei, Gang Guo, and Wenjie Huo. 2023. "Milk Yields and Milk Fat Composition Promoted by Pantothenate and Thiamine via Stimulating Nutrient Digestion and Fatty Acid Synthesis in Dairy Cows" Animals 13, no. 15: 2526. https://doi.org/10.3390/ani13152526