The Economic Impact of Parasitism from Nematodes, Trematodes and Ticks on Beef Cattle Production
Abstract
:Simple Summary
Abstract
1. Introduction
2. Beef Cattle Parasitism: Estimating Losses in a Changing Landscape
3. Parasites of Economic Importance
3.1. Nematodes—Major Species, Health Impact and Economics of Control
3.2. Cattle Trematodes (Flukes)—Major Species, Health Impact and Economics of Control
3.3. Cattle Ticks—Major Species, Health Impact and Economics of Control
4. Implementing Parasite Control Measures
5. Parasite Control by Production Type
5.1. Cow-Calf
5.2. Weanling-Stocker-Pasture Cattle
5.3. Feedlot
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Worldbank.org. Global Population Growth Rate. 2020. Available online: https://www.google.com/search?q=global+population+growth+rate&rlz=1C1CHBF_enUS800US800&oq=global+population+growth&aqs=chrome.0.0i512j69i57j0i512l8.8360j0j7&sourceid=chrome&ie=UTF-8 (accessed on 20 May 2022).
- OECD-FAO. Agricultural Outlook 2021–2030. 2021. Available online: https://www.fao.org/3/cb5332en/Meat.pdf (accessed on 20 May 2022).
- FAO. Guidelines Resistance Management and Integrated Parasite Control in Ruminants; Book of Abstracts of the Rome; FAO: Rome, Italy, 2004. [Google Scholar]
- Corwin, R.M. Economics of gastrointestinal parasitism of cattle. Vet. Parasitol. 1997, 72, 451–460. [Google Scholar] [CrossRef]
- Sanchez, J.; Dohoo, I. A bulk tank milk survey of Ostertagia ostertagi antibodies in dairy herds in Prince Edward Island and their relationship with herd management factors and milk yield. Can. Vet. J. 2002, 43, 454–459. [Google Scholar]
- Kivaria, F.M. Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Trop. Anim. Health Prod. 2006, 38, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Bianchin, I.; Catto, B.J.; Kichel, N.A.; Torres, A.A.; Honer, M.R. The effect of the control of endo- and ectoparasites on weight gains in crossbred cattle (Bos taurus taurus × Bos taurus indicus) in the central region of Brazil. Trop. Anim. Health Prod. 2007, 39, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.S.; Leite, R. Economic impact of Rhipicephalus (Boophilus) microplus: Estimate of decreased milk production on a dairy farm. Arq. Bras. Med. Veterinária Zootec. 2013, 65, 1570–1572. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez -Vivas, R.I.; Grisi, L.; Pérez de León, A.A.; Silva Villela, H.; Torres-Acosta, J.F.d.J.; Fragoso Sánchez, H.; Romero Salas, D.; Rosario Cruz, R.; Saldierna, F.; García Carrasco, D. Potential economic impact assessment for cattle parasites in Mexico. Review. Rev. Mex. Cienc. Pecu. 2017, 8, 61–74. [Google Scholar] [CrossRef]
- Rashid, M.; Akbar, H.; Ahmad, L.; Hassan, M.A.; Ashraf, K.; Saeed, K.; Gharbi, M. A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology 2019, 146, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Pérez de León, A.A.; Mitchell, R.D.; Watson, D.W. Ectoparasites of Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 173–185. [Google Scholar] [CrossRef]
- Gasbarre, L.C. Effects of gastrointestinal nematode infection on the ruminant immune system. Vet. Parasitol. 1997, 72, 327–343. [Google Scholar] [CrossRef]
- Stromberg, B.E.; Vatthauer, R.J.; Schlotthauer, J.C.; Myers, G.H.; Haggard, D.L.; King, V.L.; Hanke, H. Production responses following strategic parasite control in a beef cow/calf herd. Vet. Parasitol. 1997, 68, 315–322. [Google Scholar] [CrossRef]
- Loyacano, A.F.; Williams, J.C.; Gurie, J.; DeRosa, A.A. Effect of gastrointestinal nematode and liver fluke infections on weight gain and reproductive performance of beef heifers. Vet. Parasitol. 2002, 107, 227–234. [Google Scholar] [CrossRef]
- Charlier, J.; Vercruysse, J.; Morgan, E.; van Dijk, J.; Williams, D.J. Recent advances in the diagnosis, impact on production and prediction of Fasciola hepatica in cattle. Parasitology 2014, 141, 326–335. [Google Scholar] [CrossRef]
- McNeilly, T.N.; Nisbet, A.J. Immune modulation by helminth parasites of ruminants: Implications for vaccine development and host immune competence. Parasite 2014, 21, 51. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.; Kasimanickam, V.R.; Kastelic, J.P.; Kasimanickam, R.K. Reduced gastrointestinal worm burden following long term parasite control improves body condition and fertility in beef cows. Vet. Parasitol. 2020, 287, 109259. [Google Scholar] [CrossRef] [PubMed]
- Backes, E.A.; Cauble, R.N.; Kegley, E.B.; Loftin, K.M.; Powell, J.G. Evaluation of postweaning performance and reproductive measurements in fall-born replacement beef heifers treated with different anthelmintic regimens. Appl. Anim. Sci. 2021, 37, 314–319. [Google Scholar] [CrossRef]
- USDA. Beef and Veal Production—Selected Countries Summary. In USDA Foreign Agricultural Service, Market and Trade Data; USDA: Washington, DC, USA, 2020. Available online: https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads (accessed on 23 February 2022).
- Grisi, L.; Leite, R.C.; Martins, J.R.; Barros, A.T.; Andreotti, R.; Cançado, P.H.; León, A.A.; Pereira, J.B.; Villela, H.S. Reassessment of the potential economic impact of cattle parasites in Brazil. Rev. Bras. Parasitol. Vet. 2014, 23, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Molento, M.B.; Bennema, S.; Bertot, J.; Pritsch, I.C.; Arenal, A. Bovine fascioliasis in Brazil: Economic impact and forecasting. Vet. Parasitol. Reg. Stud. Rep. 2018, 12, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Hinney, B.; von Samson-Himmelstjerna, G.; Băcescu, B.; Mickiewicz, M.; et al. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [Google Scholar] [CrossRef]
- Lane, J.; Jubb, T.; Shephard, R.; Webb-Ware, J.; Fordyce, G. Priority List of Endemic Diseases for the Red Meat Industries. 2015. Available online: https://www.mla.com.au/contentassets/5c4a6eb332a94448b15602249c9fa6f1/b.ahe.0010_final_report.pdf (accessed on 2 June 2022).
- Lawrence, J.D.; Ibarburu, M.A. Economic Analysis of Pharmaceutical Technologies in Modern Beef Production. In Proceedings of the NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management, Chicago, IL, USA, 16–17 April 2007; Available online: http://www.farmdoc.uiuc.edu/nccc134 (accessed on 3 February 2022).
- Eastwood, L.C.; Boykin, C.A.; Harris, M.K.; Arnold, A.N.; Hale, D.S.; Kerth, C.R.; Griffin, D.B.; Savell, J.W.; Belk, K.E.; Woerner, D.R.; et al. National Beef Quality Audit-2016: Transportation, mobility, and harvest-floor assessments of targeted characteristics that affect quality and value of cattle, carcasses, and by-products1. Transl. Anim. Sci. 2017, 1, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, M.K.; Eastwood, L.C.; Boykin, C.A.; Arnold, A.N.; Gehring, K.B.; Hale, D.S.; Kerth, C.R.; Griffin, D.B.; Savell, J.W.; Belk, K.E.; et al. National Beef Quality Audit-2016: Assessment of cattle hide characteristics, offal condemnations, and carcass traits to determine the quality status of the market cow and bull beef industry. Transl. Anim. Sci. 2018, 2, 37–49. [Google Scholar] [CrossRef]
- USDA. 2016 Overview of, U.S. Livestock, Poultry, and Aquaculture Production in 2016. Available online: https://www.aphis.usda.gov/animal_health/nahms/downloads/Demographics2016.pdf (accessed on 2 March 2023).
- World Organization for Animal Health. Terrestrial Animal Health Code—Introduction to the Recommendations for Animal Welfare—Article 7. 1. 1. 2019. Available online: https://rr-europe.woah.org/wp-content/uploads/2020/08/oie-terrestrial-code-1_2019_en.pdf (accessed on 23 September 2022).
- Forbes, A.B.; Huckle, C.A.; Gibb, M.J.; Rook, A.J.; Nuthall, R. Evaluation of the effects of nematode parasitism on grazing behaviour, herbage intake and growth in young grazing cattle. Vet. Parasitol. 2000, 90, 111–118. [Google Scholar] [CrossRef]
- Szyszka, O.; Tolkamp, B.J.; Edwards, S.A.; Kyriazakis, I. Do the changes in the behaviours of cattle during parasitism with Ostertagia ostertagi have a potential diagnostic value? Vet. Parasitol. 2013, 193, 214–222. [Google Scholar] [CrossRef]
- Högberg, N.; Lidfors, L.; Hessle, A.; Arvidsson Segerkvist, K.; Herlin, A.; Höglund, J. Effects of nematode parasitism on activity patterns in first-season grazing cattle. Vet. Parasitol. 2019, 1, 100011. [Google Scholar] [CrossRef]
- Högberg, N.; Hessle, A.; Lidfors, L.; Baltrušis, P.; Claerebout, E.; Höglund, J. Subclinical nematode parasitism affects activity and rumination patterns in first-season grazing cattle. Animal 2021, 15, 100237. [Google Scholar] [CrossRef]
- Hurtado, O.J.B.; Giraldo-Ríos, C. Economic and Health Impact of the Ticks in Production Animals. In Ticks and Tick-Borne Pathogens; Abubakar, M., Perera, P.K., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Jongejan, F.; Uilenberg, G. The global importance of ticks. Parasitology 2004, 129, S3–S14. [Google Scholar] [CrossRef] [PubMed]
- Fox, N.J.; Smith, L.A.; Houdijk, J.G.M.; Athanasiadou, S.; Hutchings, M.R. Ubiquitous parasites drive a 33% increase in methane yield from livestock. Int. J. Parasitol. 2018, 48, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, N.N.; MacLeod, M.; Hayward, A.; McNeilly, T.; Ferguson, K.D.; Skuce, P.J. Liver fluke in beef cattle–Impact on production efficiency and associated greenhouse gas emissions estimated using causal inference methods. Prev. Vet-Erinary Med. 2022, 200, 105579. [Google Scholar] [CrossRef]
- Kenyon, F.; Dick, J.; Smith, R.I.; Coulter, D.G.; McBean, D.; Skuce, P.J. Reduction in Greenhouse Gas Emissions Associated with Worm Control in Lambs. Agriculture 2013, 3, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Ott, T.; Tricarico, J.; Rotz, A.; Waghorn, G.; Adesogan, A.; Dijkstra, J.; Montes, F.; Oh, J.; Kebreab, E.; et al. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal man-agement mitigation options. J. Anim. Sci. 2013, 91, 5095–5113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ADAS. Study to Model the Impact of Controlling Endemic Cattle Diseases and Conditions on National Cattle Productivity, Agricultural Performance and Greenhouse Gas Emissions Final Report. Available online: https://randd.defra.gov.uk/ProjectDetails?ProjectId=17791 (accessed on 18 January 2023).
- Scottish Government. Climate Change Policy. Available online: https://www.gov.scot/policies/climate-change/ (accessed on 19 April 2023).
- Cowley, C. Long-Term Pressures and Prospects for the U.S. Cattle Industry. Econ. Rev. 2021, 107, 23–43. Available online: https://www.kansascityfed.org/research/economic-review/long-term-pressures-and-prospects-for-the-us-cattle-industry/ (accessed on 25 April 2023). [CrossRef]
- Lopes, L.B.; Nicolino, R.; Capanema, R.O.; Oliveira, C.S.F.; Haddad, J.P.A.; Eckstein, C. Economic impacts of parasitic diseases in cattle. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2015, 2015, 10051. [Google Scholar] [CrossRef]
- Stromberg, B.E.; Gasbarre, L.C. Gastrointestinal Nematode Control Programs with an Emphasis on Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2006, 22, 543–565. [Google Scholar] [CrossRef]
- Domingos, A.; Sandra, A.; Borges, L.; Rosário, V. Approaches Towards Tick and Tick-Borne Diseases Control. Rev. Soc. Bras. Med. Tropical. 2013, 46, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Forbes, A. Liver fluke control in cattle: Why, when and how? Cattle Pract. 2013, 21, 150–156. [Google Scholar]
- Craig, T.M. Gastrointestinal Nematodes, Diagnosis and Control. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 185–199. [Google Scholar] [CrossRef]
- Craig, T.M. Impact of internal parasites on beef cattle. J. Anim. Sci. 1988, 66, 1565–1569. [Google Scholar] [CrossRef]
- Stromberg, B.E.; Gasbarre, L.C.; Ballweber, L.R.; Dargatz, D.A.; Rodriguez, J.M.; Kopral, C.A.; Zarlenga, D.S. Prevalence of internal parasites in beef cows in the United States: Results of the National Animal Health Monitoring System’s (NAHMS) beef study, 2007–2008. Can. J. Vet. Res. 2015, 79, 290–295. [Google Scholar]
- Navarre, C. New era of parasite control—BMPs for beef cattle. In Proceedings of the American Association of Bovine Practitioners Conference Proceedings, St. Louis, MO, USA, 12–14 September 2019; Volume 52, pp. 103–109. [Google Scholar]
- Navarre, C. Epidemiology and Control of Gastrointestinal Nematodes of Cattle in Southern Climates. Vet. Clin. N. Am. Food. Anim. Pract. 2020, 36, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Hildreth, M.B.; McKenzie, J.B. Epidemiology and Control of Gastrointestinal Nematodes of Cattle in Northern Climates. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 59–71. [Google Scholar] [CrossRef]
- Seifert, G.W. Variations between and within breeds of cattle in resistance to field infestations of the cattle tick (Boophilus microplus). Aust. J. Agric. Res. 1971, 22, 159–168. [Google Scholar] [CrossRef]
- Peña, M.T.; Miller, J.E.; Wyatt, W.; Kearney, M.T. Differences in susceptibility to gastrointestinal nematode infection between Angus and Brangus cattle in south Louisiana. Vet. Parasitol. 2000, 89, 51–61. [Google Scholar] [CrossRef]
- Piper, E.K.; Jonsson, N.N.; Gondro, C.; Lew-Tabor, A.E.; Moolhuijzen, P.; Vance, M.E.; Jackson, L.A. Immunological profiles of Bos taurus and Bos indicus cattle infested with the cattle tick, Rhipicephalus (Boophilus) microplus. Clin. Vaccine Immunol. CVI 2009, 16, 1074–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.; Alencar, M.; Giglioti, R.; Beraldo, M.; Aníbal, F.; Correia, R.; Boschini, L.; Chagas, A.; Bilhassi, T.; Oliveira, H. Resistance of beef cattle of two genetic groups to ectoparasites and gastrointestinal nematodes in the state of São Paulo, Brazil. Vet. Parasitol. 2013, 197, 168–175. [Google Scholar] [CrossRef]
- Suarez, V.; Busetti, M.; Lorenzo, R. Comparative effects of nematode infection on Bos taurus and Bos indicus crossbred calves grazing on Argentina’s Western Pampas. Vet. Parasitol. 1995, 58, 263–271. [Google Scholar] [CrossRef]
- Riley, D.; Sawyer, J.; Craig, T. Shedding and characterization of gastrointestinal nematodes of growing beef heifers in Central Texas. Vet. Parasitol. 2020, 277, 100024. [Google Scholar] [CrossRef]
- Smith, H.J. On the development of gastrointestinal parasitism in bovine yearlings. Can. J. Comp. Med. Rev. Can. Med. Comp. 1970, 34, 303–308. [Google Scholar]
- Ciordia, H. Occurrence of gastrointestinal parasites in Georgia cattle. Am. J. Vet. Res. 1975, 36, 457–461. [Google Scholar]
- Sykes, A.R. Parasitism and production in farm animals. Anim. Sci. 1994, 59, 155–172. [Google Scholar] [CrossRef]
- Shyma, K.P.; Gupta, J.P.; Singh, V. Breeding strategies for tick resistance in tropical cattle: A sustainable approach for tick control. J. Parasit. Dis. 2013, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- May, K.; Brügemann, K.; Yin, T.; Scheper, C.; Strube, C.; König, S. Genetic line comparisons and genetic parameters for endoparasite infections and test-day milk production traits. J. Dairy Sci. 2017, 100, 7330–7344. [Google Scholar] [CrossRef]
- Charlier, J.; Höglund, J.; Morgan, E.R.; Geldhof, P.; Vercruysse, J.; Claerebout, E. Biology and Epidemiology of Gastrointestinal Nematodes in Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 1–15. [Google Scholar] [CrossRef]
- Kaplan, R. Fasciola hepatica: A review of the economic impact in cattle and considerations for control. Vet. Ther. Res. Appl. Vet. Med. 2001, 2, 40–50. [Google Scholar]
- Vercruysse, J.; Claerebout, E. Treatment vs non-treatment of helminth infections in cattle: Defining the threshold. Vet. Parasitol. 2001, 98, 195–214. [Google Scholar] [CrossRef]
- Kumar, N.; Rao, T.K.S.; Varghese, A.; Rathor, V.S. Internal parasite management in grazing livestock. J. Parasit. Dis. Off. Organ Indian Soc. Parasitol. 2013, 37, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Yazwinski, T.A.; Tucker, C.A.; Powell, J.; Beck, P.; Wray, E.; Weingartz, C. Current Status of Parasite Control at the Feed Yard. Vet. Clin. N. Am. Food Anim. Pract. 2015, 31, 229–245. [Google Scholar] [CrossRef]
- Hayward, A.D.; Skuce, P.J.; McNeilly, T.N. The influence of liver fluke infection on production in sheep and cattle: A meta-analysis. Int. J. Parasitol. 2021, 51, 913–924. [Google Scholar] [CrossRef]
- Nicaretta, J.E.; Zapa, D.M.B.; Couto, L.F.M.; Heller, L.M.; Cavalcante, A.S.D.A.; Cruvinel, L.B.; Júnior, R.D.D.M.; Ferreira, L.L.; Nascimento, R.M.D.; Soares, V.E.; et al. Rhipicephalus microplus seasonal dynamic in a Cerrado biome, Brazil: An update data considering the global warming. Vet. Parasitol. 2021, 296, 109506. [Google Scholar] [CrossRef]
- Boka, O.M.; Achi, L.; Adakal, H.; Azokou, A.; Yao, P.; Yapi, Y.G.; Kone, M.; Dagnogo, K.; Kaboret, Y.Y. Review of cattle ticks (Acari, Ixodida) in Ivory Coast and geographic distribution of Rhipicephalus (Boophilus) microplus, an emerging tick in West Africa. Exp. Appl. Acarol. 2017, 71, 355–369. [Google Scholar] [CrossRef]
- Tufts, D.M.; Diuk-Wasser, M.A. First hemispheric report of invasive tick species Haemaphysalis punctata, first state report of Haemaphysalis longicornis, and range expansion of native tick species in Rhode Island, USA. Parasites Vectors 2021, 14, 394. [Google Scholar] [CrossRef]
- Marendy, D.; Baker, K.; Emery, D.; Rolls, P.; Stutchbury, R. Haemaphysalis longicornis: The life-cycle on dogs and cattle, with confirmation of its vector status for Theileria orientalis in Australia. Vet. Parasitol. 2019, 277, 100022. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, J.; Sargison, N.; Kenyon, F.; Skuce, P. Climate change and infectious disease: Helminthological challenges to farmed ruminants in temperate regions. Animal 2010, 4, 377–392. [Google Scholar] [CrossRef] [Green Version]
- Fox, N.J.; White, P.C.L.; McClean, C.J.; Marion, G.; Evans, A.; Hutchings, M.R. Predicting Impacts of Climate Change on Fasciola hepatica Risk. PLoS ONE 2011, 6, e16126. [Google Scholar] [CrossRef]
- Fox, N.J. Predicting Impacts of Climate Change on Livestock Parasites. Ph.D. Thesis, University of York, York, UK, 2012. [Google Scholar]
- Fox, N.J.; Marion, G.; Davidson, R.S.; White, P.C.L.; Hutchings, M.R. Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions. Animals 2012, 2, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Barratt, A.; Fox, N.J.; Ahmadi, B.V.; Hutchings, M.R. Financial Impacts of Liver Fluke on Livestock Farms Under Climate Change–A Farm Level Assessment. Front. Vet. Sci. 2020, 7, 564795. [Google Scholar] [CrossRef]
- Spare, M.R.; Hanzlicek, G.A.; Wootten, K.L.; Anderson, G.A.; Thomson, D.U.; Sanderson, M.W.; Ganta, R.R.; Reif, K.E.; Raghavan, R.K. Bovine anaplasmosis herd prevalence and management practices as risk-factors associated with herd disease status. Vet. Parasitol. 2019, 277, 100021. [Google Scholar] [CrossRef] [PubMed]
- Githaka, N.W.; Kanduma, E.G.; Wieland, B.; Darghouth, M.A.; Bishop, R.P. Acaricide resistance in livestock ticks infesting cattle in Africa: Current status and potential mitigation strategies. Curr. Res. Parasitol. Vector-Borne Dis. 2022, 2, 100090. [Google Scholar] [CrossRef]
- Knubben-Schweizer, G.; Torgerson, P. Bovine fasciolosis: Control strategies based on the location of Galba truncatula habitats on farms. Vet. Parasitol. 2015, 208, 77–83. [Google Scholar] [CrossRef]
- Rehman, A.; Abidi, S.M.A. Chapter 29—Livestock health: Current status of helminth infections and their control for sustainable development. In Advances in Animal Experimentation and Modeling; Sobti, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 365–378. [Google Scholar]
- Rodriguez-Vivas, R.I.; Jonsson, N.N.; Bhushan, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol. Res. 2017, 117, 3–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef]
- Tolleson, D.R.; Carstens, G.E.; Welsh, T.H.; Teel, P.D.; Strey, O.F.; Longnecker, M.T.; Prince, S.D.; Banik, K.K. Plane of nutrition by tick-burden interaction in cattle: Effect on growth and metabolism1. J. Anim. Sci. 2012, 90, 3442–3450. [Google Scholar] [CrossRef] [Green Version]
- Ramos, F.; Marques, C.B.; Reginato, C.Z.; Rodrigues, F.D.S.; Sangioni, L.A.; Vogel, F.S.F.; Pötter, L. Economic viability of anthelmintic treatment in naturally infected beef cattle under different nutritional strategies after weaning. Parasitol. Res. 2018, 117, 3993–4002. [Google Scholar] [CrossRef]
- Pivoto, F.L.; Cezar, A.S.; Vogel, F.S.F.; Marques, C.B.; Alves, M.E.M.; Becker, C.C.; Leal, M.L.D.R. Economic losses caused by the use of low-efficacy anthelmintic drugs in growing heifers. Trop. Anim. Health Prod. 2019, 52, 1365–1374. [Google Scholar] [CrossRef]
- Gasbarre, L.C.; Smith, L.L.; Lichtenfels, J.R.; Pilitt, P.A. The identification of cattle nematode parasites resistant to multiple classes of anthelmintics in a commercial cattle population in the US. Vet. Parasitol. 2009, 166, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Rendell, D. Anthelmintic resistance in cattle nematodes on 13 south-west Victorian properties. Aust. Vet. J. 2010, 88, 504–509. [Google Scholar] [CrossRef]
- McArthur, M.; Reinemeyer, C. Herding the U.S. cattle industry toward a paradigm shift in parasite control. Vet. Parasitol. 2014, 204, 34–43. [Google Scholar] [CrossRef]
- Cotter, J.L.; Van Burgel, A.; Besier, R.B. Anthelmintic resistance in nematodes of beef cattle in south-west Western Australia. Vet. Parasitol. 2015, 207, 276–284. [Google Scholar] [CrossRef]
- Rose, H.; Rinaldi, L.; Bosco, A.; Mavrot, F.; de Waal, T.; Skuce, P.; Charlier, J.; Torgerson, P.R.; Hertzberg, H.; Hendrickx, G.; et al. Widespread anthelmintic resistance in European farmed ruminants: A systematic review. Vet. Rec. 2015, 176, 546. [Google Scholar] [CrossRef] [Green Version]
- Bullen, S.; Beggs, D.; Mansell, P.; Runciman, D.; Malmo, J.; Playford, M.; Pyman, M.; Beggs, D. Anthelmintic resistance in gastrointestinal nematodes of dairy cattle in the Macalister Irrigation District of Victoria. Aust. Vet. J. 2016, 94, 35–41. [Google Scholar] [CrossRef]
- Ramos, F.; Portella, L.P.; Rodrigues, F.D.S.; Reginato, C.Z.; Pötter, L.; Cezar, A.S.; Sangioni, L.A.; Vogel, F.S.F. Anthelmintic resistance in gastrointestinal nematodes of beef cattle in the state of Rio Grande do Sul, Brazil. Int. J. Parasitol. Drugs Drug Resist. 2016, 6, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Fairweather, I.; Brennan, G.P.; Hanna, R.E.B.; Robinson, M.W.; Skuce, P.J. Drug resistance in liver flukes. Int. J. Parasitol. Drugs Drug Resist. 2020, 12, 39–59. [Google Scholar] [CrossRef]
- Dzemo, W.D.; Thekisoe, O.; Vudriko, P. Development of acaricide resistance in tick populations of cattle: A systematic review and meta-analysis. Heliyon 2022, 8, e08718. [Google Scholar] [CrossRef]
- Bliss, D.H.; Moore, R.D.; Kvasnicka, W.G. Parasite resistance in US cattle. In Proceedings of the Forty-First Annual Conference of American Association of Bovine Practitioners, Charlotte, NC, USA, 25–27 September 2008; pp. 109–114. [Google Scholar]
- Demeler, J.; Van Zeveren, A.; Kleinschmidt, N.; Vercruysse, J.; Höglund, J.; Koopmann, R.; Cabaret, J.; Claerebout, E.; Areskog, M.; von Samson-Himmelstjerna, G. Monitoring the efficacy of ivermectin and albendazole against gastro intestinal nematodes of cattle in Northern Europe. Vet. Parasitol. 2009, 160, 109–115. [Google Scholar] [CrossRef]
- Gasbarre, L.C.; Smith, L.L.; Hoberg, E.; Pilitt, P.A. Further characterization of a cattle nematode population with demonstrated resistance to current anthelmintics. Vet. Parasitol. 2009, 166, 275–280. [Google Scholar] [CrossRef]
- Borges, F.; Almeida, G.D.; Heckler, R.P.; Lemes, R.T.; Onizuka, M.K.V.; Borges, D.G.L. Anthelmintic resistance impact on tropical beef cattle productivity: Effect on weight gain of weaned calves. Trop. Anim. Health Prod. 2012, 45, 723–727. [Google Scholar] [CrossRef]
- Das Neves, J.H.; Carvalho, N.; Rinaldi, L.; Cringoli, G.; Amarante, A.F. Diagnosis of anthelmintic resistance in cattle in Brazil: A comparison of different methodologies. Vet. Parasitol. 2014, 206, 216–226. [Google Scholar] [CrossRef]
- Geurden, T.; Chartier, C.; Fanke, J.; di Regalbono, A.F.; Traversa, D.; von Samson-Himmelstjerna, G.; Demeler, J.; Vanimisetti, H.B.; Bartram, D.J.; Denwood, M.J. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 163–171. [Google Scholar] [CrossRef]
- Martínez-Valladares, M.; Geurden, T.; Bartram, D.; Martínez-Pérez, J.; Robles-Pérez, D.; Bohórquez, A.; Florez, E.; Meana, A.; Rojo-Vázquez, F. Resistance of gastrointestinal nematodes to the most commonly used anthelmintics in sheep, cattle and horses in Spain. Vet. Parasitol. 2015, 211, 228–233. [Google Scholar] [CrossRef]
- Peña-Espinoza, M.; Thamsborg, S.M.; Denwood, M.J.; Drag, M.; Hansen, T.V.; Jensen, V.F.; Enemark, H.L. Efficacy of ivermectin against gastrointestinal nematodes of cattle in Denmark evaluated by different methods for analysis of faecal egg count reduction. Int. J. Parasitol. Drugs Drug Resist. 2016, 6, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Chartier, C.; Ravinet, N.; Bosco, A.; Dufourd, E.; Gadanho, M.; Chauvin, A.; Charlier, J.; Maurelli, M.; Cringoli, G.; Rinaldi, L. Assessment of anthelmintic efficacy against cattle gastrointestinal nematodes in western France and southern Italy. J. Helminthol. 2020, 94, e125. [Google Scholar] [CrossRef]
- Soutello, R.G.; Seno, M.C.; Amarante, A.F. Anthelmintic resistance in cattle nematodes in northwestern São Paulo State, Brazil. Vet. Parasitol. 2007, 148, 360–364. [Google Scholar] [CrossRef]
- Jaeger, L.H.; Carvalho-Costa, F.A. Status of benzimidazole resistance in intestinal nematode populations of livestock in Brazil: A systematic review. BMC Vet. Res. 2017, 13, 358. [Google Scholar] [CrossRef] [Green Version]
- Young, A.S.; Groocock, C.M.; Kariuki, D.P. Integrated control of ticks and tick-borne diseases of cattle in Africa. Parasitology 1988, 96, 403–432. [Google Scholar] [CrossRef]
- Grannis, J.; Hooker, N.; Thilmany, D. Consumer preference for specific attributes in natural beef products. J. Agric. Resour. Econ. 2000, 25, 36406. [Google Scholar]
- Gasbarre, L.C.; Leighton, E.A.; Sonstegard, T. Role of the bovine immune system and genome in resistance to gastrointestinal nematodes. Vet. Parasitol. 2001, 98, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Hoste, H.; Torres-Acosta, J. Non chemical control of helminths in ruminants: Adapting solutions for changing worms in a changing world. Vet. Parasitol. 2011, 180, 144–154. [Google Scholar] [CrossRef]
- Tabor, A.E.; Ali, A.; Rehman, G.; Garcia, G.R.; Zangirolamo, A.F.; Malardo, T.; Jonsson, N.N. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses. Front. Cell Infect. Microbiol. 2017, 7, 506. [Google Scholar] [CrossRef] [Green Version]
- Burrow, H.M.; Mans, B.; Cardoso, F.; Birkett, M.; Kotze, A.C.; Hayes, B.; Mapholi, N.; Dzama, K.; Marufu, M.; Githaka, N.; et al. Towards a new phenotype for tick resistance in beef and dairy cattle: A review. Anim. Prod. Sci. 2019, 59, 1401–1427. [Google Scholar] [CrossRef] [Green Version]
- Gilleard, J.S.; Kotze, A.C.; Leathwick, D.; Nisbet, A.J.; McNeilly, T.N.; Besier, B. A journey through 50 years of research relevant to the control of gastrointestinal nematodes in ruminant livestock and thoughts on future directions. Int. J. Parasitol. 2021, 51, 1133–1151. [Google Scholar] [CrossRef]
- Mehmood, K.; Zhang, H.; Sabir, A.J.; Abbas, R.Z.; Ijaz, M.; Durrani, A.Z.; Saleem, M.H.; Rehman, M.U.; Iqbal, M.K.; Wang, Y.; et al. A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants. Microb. Pathog. 2017, 109, 253–262. [Google Scholar] [CrossRef]
- De la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008, 13, 6938–6946. [Google Scholar] [CrossRef] [Green Version]
- USDA. Vector-Borne Diseases. 2021. Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cattle-disease-information/cattle-vector-borne-diseases (accessed on 14 June 2022).
- Charlier, J.; van der Voort, M.; Kenyon, F.; Skuce, P.; Vercruysse, J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 2014, 30, 361–367. [Google Scholar] [CrossRef]
- Ballweber, L.; Smith, L.; Stuedemann, J.; Yazwinski, T.; Skogerboe, T. The effectiveness of a single treatment with doramectin or ivermectin in the control of gastrointestinal nematodes in grazing yearling stocker cattle. Vet. Parasitol. 1997, 72, 53–68. [Google Scholar] [CrossRef]
- Williams, J.; Loyacano, A.; DeRosa, A.; Gurie, J.; Clymer, B.; Guerino, F. A comparison of persistent anthelmintic efficacy of topical formulations of doramectin, ivermectin, eprinomectin and moxidectin against naturally acquired nematode infections of beef calves. Vet. Parasitol. 1999, 85, 277–288. [Google Scholar] [CrossRef]
- Couto, L.F.M.; Zapa, D.M.B.; Heller, L.M.; Cavalcante, A.S.D.A.; Nicaretta, J.E.; Cruvinel, L.B.; Colli, M.H.A.; Ferreira, L.L.; Alencar, A.; de Melo-Junior, R.D.; et al. Gastrointestinal nematode control programs in yearling Nellore heifers: Analysis of fecal egg counts, weight gain and reproductive indices. Anim. Reprod. Sci. 2021, 226, 106695. [Google Scholar] [CrossRef]
- Forbes, A. Lungworm in cattle: Epidemiology, pathology and immunobiology. Livestock 2018, 23, 59–66. [Google Scholar] [CrossRef]
- De Macedo, L.O.; Lima, T.A.R.F.; Verocai, G.G.; Alves, L.C.; de Carvalho, G.A.; Ramos, R.A.N. Lungworms in ruminants from Brazil: A retrospective epidemiological study over four decades. Vet. Parasitol. Reg. Stud. Rep. 2021, 26, 100645. [Google Scholar] [CrossRef]
- Macedo, L.O.; Ubirajara Filho, C.R.C.; Brito, R.S.; Santos, K.; Mendonça, C.L.; Carvalho, G.A.; Ramos, R.A.N. Larvoscopic study on Dictyocaulus sp. in the faeces of beef cattle in northeastern Brazil. Rev. Bras. Parasitol. Vet. 2022, 31, e009122. [Google Scholar] [CrossRef]
- Frey, C.; Eicher, R.; Raue, K.; Strube, C.; Bodmer, M.; Hentrich, B.; Gottstein, B.; Marreros, N. Apparent prevalence of and risk factors for infection with Ostertagia ostertagi, Fasciola hepatica and Dictyocaulus viviparus in Swiss dairy herds. Vet. Parasitol. 2018, 250, 52–59. [Google Scholar] [CrossRef]
- Schunn, A.-M.; Conraths, F.; Staubach, C.; Fröhlich, A.; Forbes, A.; Schnieder, T.; Strube, C. Lungworm Infections in German Dairy Cattle Herds—Seroprevalence and GIS-Supported Risk Factor Analysis. PLoS ONE 2013, 8, e74429. [Google Scholar] [CrossRef] [Green Version]
- Bennema, S.; Vercruysse, J.; Claerebout, E.; Schnieder, T.; Strube, C.; Ducheyne, E.; Hendrickx, G.; Charlier, J. The use of bulk-tank milk ELISAs to assess the spatial distribution of Fasciola hepatica, Ostertagia ostertagi and Dictyocaulus viviparus in dairy cattle in Flanders (Belgium). Vet. Parasitol. 2009, 165, 51–57. [Google Scholar] [CrossRef]
- Bloemhoff, Y.; Forbes, A.; Good, B.; Morgan, E.; Mulcahy, G.; Strube, C.; Sayers, R. Prevalence and seasonality of bulk milk antibodies against Dictyocaulus viviparus and Ostertagia ostertagi in Irish pasture-based dairy herds. Vet. Parasitol. 2015, 209, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Ploeger, H.; Verbeek, P.; Dekkers, C.; Strube, C.; Van Engelen, E.; Uiterwijk, M.; Lam, T.; Holzhauer, M. The value of a bulk-tank milk ELISA and individual serological and faecal examination for diagnosing (sub)clinical Dictyocaulus viviparus infection in dairy cows. Vet. Parasitol. 2012, 184, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Schnieder, T.; Bellmer, A.; Tenter, A. Seroepidemiological study on Dictyocaulus viviparus infections in first year grazing cattle in northern Germany. Vet. Parasitol. 1993, 47, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Höglund, J.; Viring, S.; Törnqvist, M. Seroprevalence of Dictyocaulus viviparus in first grazing season calves in Sweden. Vet. Parasitol. 2004, 125, 343–352. [Google Scholar] [CrossRef]
- Msolla, P.; Allan, E.; Selman, I.; Wiseman, A. Reactivation and shedding of bovine herpesvirus 1 following Dictyocaulus viviparus infection. J. Comp. Pathol. 1983, 93, 271–274. [Google Scholar] [CrossRef]
- Panuska, C. Lungworms of ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2006, 22, 583–593. [Google Scholar] [CrossRef]
- Holzhauer, M.; van Schaik, G.; Saatkamp, H.W.; Ploeger, H.W. Lungworm outbreaks in adult dairy cows: Estimating economic losses and lessons to be learned. Vet. Rec. 2011, 169, 494. [Google Scholar] [CrossRef]
- May, K.; Brügemann, K.; König, S.; Strube, C. The effect of patent Dictyocaulus viviparus (re)infections on individual milk yield and milk quality in pastured dairy cows and correlation with clinical signs. Parasit. Vectors 2018, 11, 24. [Google Scholar] [CrossRef]
- Wills, F.K.; Campbell, J.R.; Parker, S.E.; Waldner, C.L.; Uehlinger, F.D. Gastrointestinal nematode management in western Canadian cow-calf herds. Am. Jew. Hist. 2020, 61, 382–388. [Google Scholar]
- Mason, P.; McKay, C. Field studies investigating anthelmintic resistance in young cattle on five farms in New Zealand. N. Z. Vet. J. 2006, 54, 318–322. [Google Scholar] [CrossRef]
- Vineer, H.R.; Morgan, E.R.; Hertzberg, H.; Bartley, D.J.; Bosco, A.; Charlier, J.; Chartier, C.; Claerebout, E.; De Waal, T.; Hendrickx, G.; et al. Increasing importance of anthelmintic resistance in European livestock: Creation and meta-analysis of an open database. Parasite 2020, 27, 69. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, J.A.; Hoste, H.; Kaplan, R.M.; Besier, R.B. Targeted selective treatment for worm management—How do we sell rational programs to farmers? Vet. Parasitol. 2006, 139, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Charlier, J.; Levecke, B.; Devleesschauwer, B.; Vercruysse, J.; Hogeveen, H. The economic effects of whole-herd versus selective anthelmintic treatment strategies in dairy cows. J. Dairy Sci. 2012, 95, 2977–2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlier, J.; Morgan, E.; Rinaldi, L.; van Dijk, J.; Demeler, J.; Höglund, J.; Hertzberg, H.; Van Ranst, B.; Hendrickx, G.; Vercruysse, J.; et al. Practices to optimise gastrointestinal nematode control on sheep, goat and cattle farms in Europe using targeted (selective) treatments. Vet. Rec. 2014, 175, 250–255. [Google Scholar] [CrossRef]
- Berk, Z.; Laurenson, Y.C.; Forbes, A.B.; Kyriazakis, I. Modelling the impacts of pasture contamination and stocking rate for the development of targeted selective treatment strategies for Ostertagia ostertagi infection in calves. Vet. Parasitol. 2017, 238, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Charlier, J.; Bartley, D.J.; Sotiraki, S.; Martinez-Valladares, M.; Claerebout, E.; von Samson-Himmelstjerna, G.; Thamsborg, S.M.; Hoste, H.; Morgan, E.R.; Rinaldi, L. Chapter Three—Anthelmintic resistance in ruminants: Challenges and solutions. In Advances in Parasitology; Rollinson, D., Stothard, R., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 171–227. [Google Scholar]
- Walker, R.; Miller, J.; Monlezun, C.; LaMay, D.; Navarre, C.; Ensley, D. Gastrointestinal nematode infection and performance of weaned stocker calves in response to anthelmintic control strategies. Vet. Parasitol. 2013, 197, 152–159. [Google Scholar] [CrossRef]
- Smith, L. Combination anthelmintics effectively control ML-resistant parasites; a real-world case history. Vet. Parasitol. 2014, 204, 12–17. [Google Scholar] [CrossRef]
- Heckler, R.; Borges, D.; Vieira, M.; Conde, M.; Green, M.; Amorim, M.; Echeverria, J.; Oliveira, T.; Moro, E.; Van Onselen, V.; et al. New approach for the strategic control of gastrointestinal nematodes in grazed beef cattle during the growing phase in central Brazil. Vet. Parasitol. 2016, 221, 123–129. [Google Scholar] [CrossRef]
- Fiel, C.; Steffan, P.; Muchiut, S.; Fernández, A.; Bernat, G.; Riva, E.; Lloberas, M.; Almada, A.; Homer, D. An attempt to replace an ivermectin-resistant Cooperia spp. population by a susceptible one on grazing pastures based on epidemiological principles and refugia management. Vet. Parasitol. 2017, 246, 53–59. [Google Scholar] [CrossRef]
- Greer, A.W.; Van Wyk, J.A.; Hamie, J.C.; Byaruhanga, C.; Kenyon, F. Refugia-Based Strategies for Parasite Control in Livestock. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 31–43. [Google Scholar] [CrossRef]
- Sanson, D.W.; DeRosa, A.A.; Oremus, G.R.; Foil, L.D. Effect of horn fly and internal parasite control on growth of beef heifers. Vet. Parasitol. 2003, 117, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Keyyu, J.D.; Kyvsgaard, N.C.; Monrad, J.; Kassuku, A.A. Effectiveness of strategic anthelmintic treatments in the control of gastrointestinal nematodes and Fasciola gigantica in cattle in Iringa region, Tanzania. Trop. Anim. Health Prod. 2008, 41, 25–33. [Google Scholar] [CrossRef]
- Clark, C.; Busby, W.; Gunn, P. Effects of internal parasite infection at feedlot arrival on performance and carcass characteristics of beef steers. Prof. Anim. Sci. 2015, 31, 412–416. [Google Scholar] [CrossRef] [Green Version]
- Baruselli, P.S.; Catussi, B.L.C.; De Abreu, L.; Elliff, F.M.; Da Silva, L.G.; Batista, E.D.O.S. Challenges to increase the AI and ET markets in Brazil. Anim. Reprod. 2019, 16, 364–375. [Google Scholar] [CrossRef] [Green Version]
- Heller, L.M.; Couto, L.F.M.; Zapa, D.M.B.; Cavalcante, A.S.D.A.; Colli, M.H.A.; Ferreira, L.L.; Scarpa, A.B.; Déo, P.H.; Soares, V.E.; de Vasconcelos, J.L.M.; et al. Increase in the reproductive efficiency of primiparous and multiparous Nellore cows following moxidectin treatment at the onset of a fixed-time artificial insemination protocol. Livest. Sci. 2021, 251, 104613. [Google Scholar] [CrossRef]
- Gomes, L.V.C.; Teixeira, W.F.P.; Maciel, W.G.; Felippelli, G.; Buzzulini, C.; Soares, V.E.; de Melo, D.P.; Cruz, B.C.; Rodrigues, D.C.; Ferreira, L.L.; et al. Strategic control of cattle co-parasitized by tick, fly and gastrointestinal nematodes: Is it better to use ecto + endoparasiticide or just endectocide formulations? Vet. Parasitol. 2022, 301, 109622. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, M.T.M.; Conde, M.H.; Freitas, M.G.d.; Fávero, F.C.; Paula LCd Cabrera, M.D.S.; Gomes, M.d.N.B.; Brumatti, R.C.; Rodrigues, D.d.C.; Borges, F.d.A. Economic Viability Analysis of an Oral Anthelmintic Treatment for Cattle in Feedlot. J. Agric. Stud. 2022, 9, 188–204. [Google Scholar] [CrossRef]
- Conde, M.H.; Heckler, R.P.; Borges, D.G.L.; Van Onselen, V.J.; Brumatti, R.C.; Borges, F.D.A. Economic analysis of strategic control program (5, 8, 11) for gastrointestinal nematodes in grazing beef cattle during the growing phase in Central Brazil. Semin. Ciências Agrárias 2019, 40, 2309. [Google Scholar] [CrossRef] [Green Version]
- Lalor, R.; Cwiklinski, K.; Calvani, N.E.D.; Dorey, A.; Hamon, S.; Corrales, J.L.; Dalton, J.P.; Verissimo, C.D.M. Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola Gigantica that cause the zoonosis Fasciolosis. Virulence 2021, 12, 2839–2867. [Google Scholar] [CrossRef]
- Bennema, S.C.; Scholte, R.G.C.; Molento, M.B.; Medeiros, C.; Carvalho, O.D.S. Fasciola hepatica in bovines in Brazil: Data availability and spatial distribution. Rev. Inst. Med. Trop. Sao Paulo 2014, 56, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Malone, J.B.; Loyacano, A.; Armstrong, D.A.; Archbald, L.F. Bovine fascioliasis. Bov. Pract. 1982, 17, 126–133. [Google Scholar] [CrossRef]
- Sanchez-Vazquez, M.J.; Lewis, F.I. Investigating the impact of fasciolosis on cattle carcase performance. Vet. Parasitol. 2013, 193, 307–311. [Google Scholar] [CrossRef]
- Mazeri, S.; Rydevik, G.; Handel, I.; Bronsvoort, B.M.D.; Sargison, N. Estimation of the impact of Fasciola hepatica infection on time taken for UK beef cattle to reach slaughter weight. Sci. Rep. 2017, 7, 7319. [Google Scholar] [CrossRef]
- Da Costa, R.A.; Corbellini, L.G.; Castro-Janer, E.; Riet-Correa, F. Evaluation of losses in carcasses of cattle naturally infected with Fasciola hepatica: Effects on weight by age range and on carcass quality parameters. Int. J. Parasitol. 2019, 49, 867–872. [Google Scholar] [CrossRef]
- Schweizer, G.; Braun, U.; Deplazes, P.; Torgerson, P. Estimating the financial losses due to bovine fasciolosis in Switzerland. Vet. Rec. 2005, 157, 188–193. [Google Scholar] [CrossRef]
- Kelley, J.M.; Elliott, T.P.; Beddoe, T.; Anderson, G.; Skuce, P.; Spithill, T.W. Current Threat of Triclabendazole Resistance in Fasciola hepatica. Trends Parasitol. 2016, 32, 458–469. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.R.; Kunkle, W.; Courtney, C.H.; Shearer, J.K. Economic analysis of controlling liver flukes. Agri. Pract. 1985, 6, 20–24. [Google Scholar]
- Simpson, J.R.; Courtney, C.H. Liver Flukes in Florida: Prevalence, Economics, and Management Practices on Ranches Surveyed; Bulletin-Florida Cooperative Extension Service; University of Florida: Gainsesville, FL, USA, 1990. [Google Scholar]
- Loyacano, A.F.; Skogerboe, T.L.; Williams, J.C.; DeRosa, A.A.; Gurie, J.A.; Shostrom, V.K. Effects of parenteral administration of doramectin or a combination of ivermectin and clorsulon on control of gastrointestinal nematode and liver fluke infections and on growth performance in cattle. J. Am. Vet. Med. Assoc. 2001, 218, 1465–1468. [Google Scholar] [CrossRef]
- Skerrat, L.S.S. Development of a Model for the Control of Fasciolosis in Cattle and Buffaloes in Cambodia; Australian Centre for International Agricultural Research Final report FR2009-28, ACIAR GPO Box 1571 Canberra ACT 2601 Australia; James Cook University: Singapore, 2009. [Google Scholar]
- Rajput, Z.I.; Hu, S.-H.; Chen, W.-J.; Arijo, A.G.; Xiao, C.-W. Importance of ticks and their chemical and immunological control in livestock. J. Zhejiang Univ. B 2006, 7, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Heyman, P.; Cochez, C.; Hofhuis, A.; Van Der Giessen, J.; Sprong, H.; Porter, S.R.; Losson, B.; Saegerman, C.; Donoso-Mantke, O.; Niedrig, M.; et al. A clear and present danger: Tick-borne diseases in Europe. Expert Rev. Anti-Infect. Ther. 2010, 8, 33–50. [Google Scholar] [CrossRef]
- Guglielmone, A.A.; Robbins, R.G.; Apanaskevich, D.A.; Petney, T.N.; Estrada-Peña, A.; Horak, I.G.; Shao, R.; Barker, S.C. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: A list of valid species names. Zootaxa 2010, 2528, 1–28. [Google Scholar] [CrossRef] [Green Version]
- De Meneghi, D.; Stachurski, F.; Adakal, H. Experiences in Tick Control by Acaricide in the Traditional Cattle Sector in Zambia and Burkina Faso: Possible Environmental and Public Health Implications. Front. Public Health 2016, 4, 239. [Google Scholar] [CrossRef] [Green Version]
- Calvano, M.P.C.A.; Brumatti, R.C.; Garcia, M.V.; Barros, J.C.; Andreotti, R. Economic efficiency of Rhipicephalus microplus control and effect on beef cattle performance in the Brazilian Cerrado. Exp. Appl. Acarol. 2019, 79, 459–471. [Google Scholar] [CrossRef]
- Sing, N.C.; Johnston, L.A.Y.; Leatch, G. The economics of cattle tick control in dry tropical Australia. Aust. Vet. J. 1983, 60, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Sutherst, R.W.; Maywald, G.F.; Kerr, J.D.; Stegeman, D.A. The effect of cattle tick (Boophilus microplus) on the growth of Bos indicus × B. taurus steers. Crop. Pasture Sci. 1983, 34, 317–327. [Google Scholar] [CrossRef]
- Scholtz, M.M.; Spickett, A.M.; Lombard, P.; Enslin, C.B. The effect of tick infestation on the productivity of cows of three breeds of cattle. Onderstepoort J. Vet. Res. 1991, 58, 71–74. [Google Scholar] [PubMed]
- Jonsson, N. The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Vet. Parasitol. 2006, 137, 1–10. [Google Scholar] [CrossRef]
- Animal Health and Welfare. Animal Diseases. 2022. Available online: https://www.woah.org/en/what-we-do/animal-health-and-welfare/animal-diseases/?_tax_animal=terrestrials%2Cbovine (accessed on 21 June 2022).
- Jacob, S.S.; Sengupta, P.P.; Paramanandham, K.; Suresh, K.P.; Chamuah, J.K.; Rudramurthy, G.R.; Roy, P. Bovine babesiosis: An insight into the global perspective on the disease distribution by systematic review and meta-analysis. Vet. Parasitol. 2020, 283, 109136. [Google Scholar] [CrossRef] [PubMed]
- Kocan, K.M.; de la Fuente, J.; Blouin, E.F.; Coetzee, J.F.; Ewing, S. The natural history of Anaplasma marginale. Vet. Parasitol. 2010, 167, 95–107. [Google Scholar] [CrossRef]
- Nene, V.; Lacasta, A.; Steinaa, L.; Toye, P.; Teufel, N.; Pye-Smith, C. Tackling the Key Cattle Disease East Coast Fever: An Overview of CGIAR Research in One of Africa’s Most Important Livestock Diseases; Innovation Brief., International Livestock Research Institute Innovation Brief.: Nairobi, Kenya, 2021; Available online: https://cgspace.cgiar.org/bitstream/handle/10568/119497/InnovationBrief_ECF.pdf?sequence=2&isAllowed=y (accessed on 14 May 2021).
- Norval, R.; Sutherst, R.; Kurki, J.; Gibson, J.; Kerr, J. The effect of the brown ear-tick Rhipicephalus appendiculatus on the growth of Sanga and European Breed cattle. Vet. Parasitol. 1988, 30, 149–164. [Google Scholar] [CrossRef]
- Pfeffer, M.; Król, N.; Obiegala, A. Prevention and control of tick-borne anaplasmosis, cowdriosis and babesiosis in the cattle industry. In Pests and Vector-Borne Diseases in the Livestock Industry; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; pp. 175–194. [Google Scholar]
- Madder, M.; Thys, E.; Achi, L.; Touré, A.; De Deken, R. Rhipicephalus (Boophilus) microplus: A most successful invasive tick species in West-Africa. Exp. Appl. Acarol. 2010, 53, 139–145. [Google Scholar] [CrossRef] [PubMed]
- De León, A.A.P.; Teel, P.D.; Auclair, A.N.; Messenger, M.T.; Guerrero, F.D.; Schuster, G.; Miller, R.J. Integrated Strategy for Sustainable Cattle Fever Tick Eradication in USA is Required to Mitigate the Impact of Global Change. Front. Physiol. 2012, 3, 195. [Google Scholar]
- De Castro, J.J. Sustainable tick and tickborne disease control in livestock improvement in developing countries. Vet. Parasitol. 1997, 71, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Lew-Tabor, A.; Valle, M.R. A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick-Borne Dis. 2016, 7, 573–585. [Google Scholar] [CrossRef]
- Regassa, A.; Penzhorn, B.; Bryson, N. Attainment of endemic stability to Babesia bigemina in cattle on a South African ranch where non-intensive tick control was applied. Vet. Parasitol. 2003, 116, 267–274. [Google Scholar] [CrossRef]
- Thullner, F.; Willadsen, P.; Kemp, D. Acaricide rotation strategy for managing resistance in the tick Rhipicephalus (Boophilus) microplus (Acarina: Ixodidae): Laboratory experiment with a field strain from Costa Rica. J. Med. Entomol. 2007, 44, 817–821. [Google Scholar] [CrossRef]
- Jonsson, N.; Miller, R.; Kemp, D.; Knowles, A.; Ardila, A.; Verrall, R.; Rothwell, J. Rotation of treatments between spinosad and amitraz for the control of Rhipicephalus (Boophilus) microplus populations with amitraz resistance. Vet. Parasitol. 2010, 169, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Calvano, M.P.C.A.; Brumatti, R.C.; Barros, J.C.; Garcia, M.V.; Martins, K.R.; Andreotti, R. Bioeconomic simulation of Rhipicephalus microplus infestation in different beef cattle production systems in the Brazilian Cerrado. Agric. Syst. 2021, 194, 103247. [Google Scholar] [CrossRef]
- Forbes, A.B.; Cutler, K.L.; Rice, B.J. Sub-clinical parasitism in spring-born, beef suckler calves: Epidemiology and impact on growth performance during the first grazing season. Vet. Parasitol. 2002, 104, 339–344. [Google Scholar] [CrossRef]
- Mackie, K.G.; Menzies, P.I.; Bateman, K.G.; Gordon, J.L. Efficacy of fenbendazole and ivermectin in treating gastrointestinal nematode infections in an Ontario cow-calf herd. Am. Jew. Hist. 2019, 60, 1213–1219. [Google Scholar]
- Höglund, J.; Dahlström, F.; Sollenberg, S.; Hessle, A. Weight gain-based targeted selective treatments (TST) of gastrointestinal nematodes in first-season grazing cattle. Vet. Parasitol. 2013, 196, 358–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, V.H.; Martínez, G.M.; Micheloud, J.F.; Viñabal, A.E. Epidemiology and effect of gastrointestinal nematodes on beef cattle from tropical Argentina. Trop. Anim. Health Prod. 2017, 50, 801–806. [Google Scholar] [CrossRef]
- Höglund, J.; Morrison, D.A.; Charlier, J.; Dimander, S.-O.; Larsson, A. Assessing the feasibility of targeted selective treatments for gastrointestinal nematodes in first-season grazing cattle based on mid-season daily weight gains. Vet. Parasitol. 2009, 164, 80–88. [Google Scholar] [CrossRef]
- Larsson, A.; Uggla, A.; Waller, P.; Höglund, J. Performance of second-season grazing cattle following different levels of parasite control in their first grazing season. Vet. Parasitol. 2011, 175, 135–140. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, J.; Earley, B.; Mee, J.; Doherty, M.; Crosson, P.; Barrett, D.; Macrelli, M.; de Waal, T. Nematode control in spring-born suckler beef calves using targeted selective anthelmintic treatments. Vet. Parasitol. 2014, 205, 150–157. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, J.; Earley, B.; Mee, J.F.; Doherty, M.L.; Crosson, P.; Barrett, D.; De Waal, T. Nematode control in suckler beef cattle over their first two grazing seasons using a targeted selective treatment approach. Ir. Vet. J. 2015, 68, 13. [Google Scholar] [CrossRef] [Green Version]
- Hicks, R.B.; Gill, D.R.; Owens, F.N.; Strasia, C.A.; Perino, L.J.; Smith, M.T.; Dolezal, H.G. Impact of Liver Flukes on the Performance of Feedlot Steers; Animal Science Research Report; Agricultural Experiment Station, Oklahoma State University: Stillwater, OK, USA, 1989; Volume 127, pp. 123–126. [Google Scholar]
- Johnson, E.; Rowland, W.; Zimmerman, G.; Walstrom, D. Comparative Performance of Feedlot Cattle with Nematode and Trematode Infections Treated with Doramectin or Ivermectin/Clorsulon Injectable Solutions. In Proceedings of the American Association of Bovine Practitioners Conference, Stillwater, OK, USA, 14–17 September 1996; p. 187. [Google Scholar]
Examples of Parasites of Cattle Common Name (Scientific Name) |
---|
INTERNAL PARASITES |
Gastrointestinal Nematodes (GIN) |
brown stomach worm (Ostertagia ostertagi) |
small stomach worm (Trichostrongylus axei; T. colubriformis) |
small intestinal roundworm (Cooperia species) |
nodular worm (Oesophagostomum radiatum) |
barbers pole worm, wire worm (Haemonchus placei) |
long-neck worm, tread-necked worm (Nematodirus helvetianus) |
cattle hookworm, nodular worm (Bunostomum phlebotomum) |
Respiratory Nematodes |
lungworm (Dictyocaulus viviparus) |
Trematodes (Flukes) |
liver flukes (Fasciola hepatica) |
giant liver fluke (Fasciola gigantica) |
rumen fluke (Paramphistomatidae spp.) |
EXTERNAL PARASITES |
Ticks |
tropical cattle tick, or cattle fever tick (Rhipicephalus (Boophilus) microplus) |
brown ear tick (Rhipicephalus appendiculatus) |
tropical bont tick (Amblyomma hebraeum) |
lone star tick (Amblyomma americanum) |
cayenne tick (Amblyomma cajannense) |
castor bean tick (Ixodes ricinus) |
Country | GIN | Fluke | Tick | Internal Parasites and Ticks | References |
---|---|---|---|---|---|
Brazil | US$7.11 B | US$0.210 B | US$3.24 B | n/a | [20,21] |
Mexico | US$0.45 B | US$0.13 B | US$0.57 B | n/a | [9] |
Europe 3 | €0.423 B (includes fluke) | n/a | n/a | n/a | [22] |
Australia | AUS$0.0 936 B | n/a | AUS$0.161 B | AUS$0.2546 B | [23] |
USA | US$8.5 B 4 | US$0.00116 B 5 | n/a | n/a | [19,24,25,26,27] |
Parasite Control in Beef Cattle |
|
Nematode Control |
|
Trematode Control |
|
Tick Control |
|
Cow/Calf Production |
|
Stocker Production |
|
Feedlot Production |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strydom, T.; Lavan, R.P.; Torres, S.; Heaney, K. The Economic Impact of Parasitism from Nematodes, Trematodes and Ticks on Beef Cattle Production. Animals 2023, 13, 1599. https://doi.org/10.3390/ani13101599
Strydom T, Lavan RP, Torres S, Heaney K. The Economic Impact of Parasitism from Nematodes, Trematodes and Ticks on Beef Cattle Production. Animals. 2023; 13(10):1599. https://doi.org/10.3390/ani13101599
Chicago/Turabian StyleStrydom, Tom, Robert P. Lavan, Siddhartha Torres, and Kathleen Heaney. 2023. "The Economic Impact of Parasitism from Nematodes, Trematodes and Ticks on Beef Cattle Production" Animals 13, no. 10: 1599. https://doi.org/10.3390/ani13101599