Early Stepdown Weaning of Dairy Calves with Glutamine and Branched-Chain Amino Acid Supplementations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Measurements and Sample Collection
2.2.1. Haptoglobin Analysis
2.2.2. Leptin Analysis
2.2.3. Serotonin Analysis
2.2.4. Analyses of Amino Acids and other Metabolites
2.3. Calculations and Statistical Analysis
3. Results
3.1. Intake and Growth
3.1.1. Pre-Weaning
3.1.2. During Weaning
3.1.3. Post Weaning
3.2. Metabolites, Haptoglobin, Serotonin, and Leptin Concentrations in the Blood
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture. Dairy 2014, Dairy Cattle Management Practices in the United States, 2014; USDA–APHIS–VS–CEAH–NAHMS: Fort Collins, CO, USA, 2016.
- Urie, N.J.; Lombard, J.E.; Shivley, C.B.; Kopral, C.A.; Adams, A.E.; Earleywine, T.J.; Olson, J.D.; Garry, F.B. Preweaned Heifer Management on US Dairy Operations: Part I. Descriptive Characteristics of Preweaned Heifer Raising Practices. J. Dairy Sci. 2018, 101, 9168–9184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, A.; Burdine, K.; Amaral-Phillips, D.; Costa, J.H.C. An Economic Analysis of the Costs Associated with Pre-Weaning Management Strategies for Dairy Heifers. Animals 2019, 9, 471. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, A.; Burdine, K.H.; Amaral-Phillips, D.M.; Costa, J.H.C. Effects of Housing System on Dairy Heifer Replacement Cost from Birth to Calving: Evaluating Costs of Confinement, Dry-Lot, and Pasture-Based Systems and Their Impact on Total Rearing Investment. Front. Vet. Sci. 2020, 7, 625. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The Biological Stress of Early Weaned Piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- De Passillé, A.M.; Borderas, T.F.; Rushen, J. Weaning Age of Calves Fed a High Milk Allowance by Automated Feeders: Effects on Feed, Water, and Energy Intake, Behavioral Signs of Hunger, and Weight Gains. J. Dairy Sci. 2011, 94, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.; Azarfar, A.; Alugongo, G.M.; Ghorbani, G.R.; Mirzaei, M.; Fadayifar, A.; Omidi-Mirzaei, H.; Cao, Z.; Drackley, J.K.; Hossieni Ghaffari, M. Milk Feeding Quantity and Feeding Frequency: Effects on Growth Performance, Rumen Fermentation and Blood Metabolites of Holstein Dairy Calves. Ital. J. Anim. Sci. 2021, 20, 336–351. [Google Scholar] [CrossRef]
- Khan, M.A.; Weary, D.M.; von Keyserlingk, M.A.G. Invited Review: Effects of Milk Ration on Solid Feed Intake, Weaning, and Performance in Dairy Heifers. J. Dairy Sci. 2011, 94, 1071–1081. [Google Scholar] [CrossRef]
- Sweeney, B.C.; Rushen, J.; Weary, D.M.; de Passillé, A.M. Duration of Weaning, Starter Intake, and Weight Gain of Dairy Calves Fed Large Amounts of Milk. J. Dairy Sci. 2010, 93, 148–152. [Google Scholar] [CrossRef]
- Bovine Alliance on Management and Nutrition. Available online: https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/bamn/BAMN03_GuideFeeding.pdf (accessed on 28 April 2022).
- Bovine Alliance on Management and Nutrition. Available online: https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/bamn/BAMN17_GuideFeeding_1.pdf (accessed on 28 April 2022).
- Eckert, E.; Brown, H.E.; Leslie, K.E.; DeVries, T.J.; Steele, M.A. Weaning Age Affects Growth, Feed Intake, Gastrointestinal Development, and Behavior in Holstein Calves Fed an Elevated Plane of Nutrition during the Preweaning Stage. J. Dairy Sci. 2015, 98, 6315–6326. [Google Scholar] [CrossRef] [Green Version]
- Wickramasinghe, H.K.J.P.; Kaya, C.A.; Baumgard, L.H.; Appuhamy, J.A.D.R.N. Early Step-down Weaning of Dairy Calves from a High Milk Volume with Glutamine Supplementation. J. Dairy Sci. 2022, 105, 1186–1198. [Google Scholar] [CrossRef]
- Wu, G.; Meier, S.A.; Knabe, D.A. Dietary Glutamine Supplementation Prevents Jejunal Atrophy in Weaned Pigs. J. Nutr. 1996, 126, 2578–2584. [Google Scholar] [CrossRef]
- Xiong, X.; Tan, B.; Song, M.; Ji, P.; Kim, K.; Yin, Y.; Liu, Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front. Vet. Sci. 2019, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. Functional Amino Acids in Growth, Reproduction, and Health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Chalvon-Demersay, T.; Luise, D.; Le Floc’h, N.; Tesseraud, S.; Lambert, W.; Bosi, P.; Trevisi, P.; Beaumont, M.; Corrent, E. Functional Amino Acids in Pigs and Chickens: Implication for Gut Health. Front. Vet. Sci. 2021, 8, 663727. [Google Scholar] [CrossRef] [PubMed]
- Habibi, M.; Shili, C.; Sutton, J.; Goodarzi, P.; Maylem, E.R.; Spicer, L.; Pezeshki, A. Branched-Chain Amino Acids Partially Recover the Reduced Growth of Pigs Fed with Protein-Restricted Diets through Both Central and Peripheral Factors. Anim. Nutr. 2021, 7, 868–882. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, S.H.; Zeng, X.F.; Liu, H.; Qiao, S.Y. Branched-Chain Amino Acids Are Beneficial to Maintain Growth Performance and Intestinal Immune-Related Function in Weaned Piglets Fed Protein Restricted Diet. Asian-Australas. J. Anim. Sci. 2015, 28, 1742–1750. [Google Scholar] [CrossRef] [Green Version]
- Tokach, M.D.; Kats, L.J.; Goodband, R.D.; Nelssen, J.L. Influence of Weaning Weight and Growth during the First Week Postweaning on Subsequent Pig Performance. In Proceedings of the Swine Day, Kansas State University, Manhattan, KS, USA, 19 November 1992. [Google Scholar]
- Williams, A.P. Amino acid requirements of the veal calf and beef steer. In Amino Acids in Farm Animal Nutrition, 2nd ed.; D’Mello, J.P.F., Ed.; CAB International: Wallingford, UK, 1994; pp. 329–349. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ji, S.; Willis, G.M.; Scott, R.R.; Spurlock, M.E. Partial Cloning and Expression of the Bovine Leptin Gene. Anim. Biotechnol. 1998, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Melnik, B.C.; Schmitz, G.; John, S.M.; Carrera-Bastos, P.; Lindeberg, S.; Cordain, L. Metabolic Effects of Milk Protein Intake Strongly Depend on Pre-Existing Metabolic and Exercise Status. Nutr. Metab. 2013, 10, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duttlinger, A.W.; Kpodo, K.R.; Schinckel, A.P.; Richert, B.T.; Johnson, J.S. Effects of Increasing Dietary L-Glutamine to Replace Antibiotics on Pig Health and Performance Following Weaning and Transport. Transl. Anim. Sci. 2020, 4, txaa157. [Google Scholar] [CrossRef]
- Wang, S.; Wang, F.; Kong, F.; Cao, Z.; Wang, W.; Yang, H.; Wang, Y.; Bi, Y.; Li, S. Effect of Supplementing Different Levels of L-Glutamine on Holstein Calves during Weaning. Antioxidants 2022, 11, 542. [Google Scholar] [CrossRef]
- Wickramasinghe, H.K.J.P.; Kramer, A.J.; Appuhamy, J.A.D.R.N. Drinking Water Intake of Newborn Dairy Calves and Its Effects on Feed Intake, Growth Performance, Health Status, and Nutrient Digestibility. J. Dairy Sci. 2019, 102, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.W. Fueling the Immune Response: What’s the Cost? In Feed Efficiency in Swine; Patience, J.F., Ed.; Academic Publishers: Wageningen, The Netherlands, 2012; pp. 211–223. [Google Scholar]
- Lochmiller, R.L.; Deerenberg, C. Trade-Offs in Evolutionary Immunology: Just What Is the Cost of Immunity? Oikos 2000, 88, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Sauerwein, H.; Schmitz, S.; Hiss, S. The Acute Phase Protein Haptoglobin and Its Relation to Oxidative Status in Piglets Undergoing Weaning-Induced Stress. Redox Rep. 2005, 10, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Li, J.Y.; Suzuki, K.; Koike, Y.; Chen, D.S.; Yonezawa, T.; Nishihara, M.; Manabe, N. Effects of Dietary Supplementation with Branched-Chain Amino Acids (BCAAs) during Nursing on Plasma BCAA Levels and Subsequent Growth in Cattle. Asian-Australas. J. Anim. Sci. 2005, 18, 1440–1444. [Google Scholar] [CrossRef]
- Heng, J.; Wu, Z.; Tian, M.; Chen, J.; Song, H.; Chen, F.; Guan, W.; Zhang, S. Excessive BCAA Regulates Fat Metabolism Partially through the Modification of M6A RNA Methylation in Weanling Piglets. Nutr. Metab. 2020, 17, 10. [Google Scholar] [CrossRef] [Green Version]
- Okuro, K.; Fukuhara, A.; Minemura, T.; Hayakawa, T.; Nishitani, S.; Okuno, Y.; Otsuki, M.; Shimomura, I. Glutamine Deficiency Induces Lipolysis in Adipocytes. Biochem. Biophys. Res. Commun. 2021, 585, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Van Thang, T.; Sunagawa, K.; Nagamine, I.; Kishi, T.; Ogura, G. A Physiological Stimulating Factor of Water Intake during and after Dry Forage Feeding in Large-Type Goats. Asian-Australas. J. Anim. Sci. 2012, 25, 502–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgos, M.S.; Langhans, W.; Senn, M. Role of Rumen Fluid Hypertonicity in the Dehydration-Induced Hypophagia of Cows. Physiol. Behav. 2000, 71, 423–430. [Google Scholar] [CrossRef]
- Krause, E.G.; de Kloet, A.D.; Flak, J.N.; Smeltzer, M.D.; Solomon, M.B.; Evanson, N.K.; Woods, S.C.; Sakai, R.R.; Herman, J.P. Hydration State Controls Stress Responsiveness and Social Behavior. J. Neurosci. 2011, 31, 5470–5476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C.; Yaqoob, P. Glutamine and the Immune System. Amino Acids 1999, 17, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Löest, C.A.; Gilliam, G.G.; Waggoner, J.W.; Turner, J.L. Post-Ruminal Branched-Chain Amino Acid Supplementation and Intravenous Lipopolysaccharide Infusion Alter Blood Metabolites, Rumen Fermentation, and Nitrogen Balance of Beef Steers. J. Anim. Sci. 2018, 96, 2886–2906. [Google Scholar] [CrossRef]
- Henry, Y.; Sève, B.; Colléaux, Y.; Ganier, P.; Saligaut, C.; Jégo, P. Interactive Effects of Dietary Levels of Tryptophan and Protein on Voluntary Feed Intake and Growth Performance in Pigs, in Relation to Plasma Free Amino Acids and Hypothalamic Serotonin. J. Anim. Sci. 1992, 70, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Heng, J.; Song, H.; Shi, K.; Lin, X.; Chen, F.; Guan, W.; Zhang, S. Dietary Branched-Chain Amino Acids Regulate Food Intake Partly through Intestinal and Hypothalamic Amino Acid Receptors in Piglets. J. Agric. Food Chem. 2019, 67, 6809–6818. [Google Scholar] [CrossRef]
- Conigrave, A.D.; Quinn, S.J.; Brown, E.M. L-Amino Acid Sensing by the Extracellular Ca2+-Sensing Receptor. Proc. Natl. Acad. Sci. USA 2000, 97, 4814–4819. [Google Scholar] [CrossRef] [Green Version]
- Ferrigno, A.; Berardo, C.; Di Pasqua, L.G.; Siciliano, V.; Richelmi, P.; Vairetti, M. Localization and Role of Metabotropic Glutamate Receptors Subtype 5 in the Gastrointestinal Tract. World J. Gastroenterol. 2017, 23, 4500–4507. [Google Scholar] [CrossRef]
- Liu, J.; Yu, K.; Zhu, W. Amino Acid Sensing in the Gut and Its Mediation in Gut-Brain Signal Transduction. Anim. Nutr. 2016, 2, 69–73. [Google Scholar] [CrossRef]
- Attele, A.S.; Shi, Z.Q.; Yuan, C.-S. Leptin, Gut, and Food Intake. Biochem. Pharmacol. 2002, 63, 1579–1583. [Google Scholar] [CrossRef]
- Hayashi, H.; Yamakado, M.; Yamaguchi, M.; Kozakai, T. Leptin and Ghrelin Expressions in the Gastrointestinal Tracts of Calves and Cows. J. Vet. Med. Sci. 2020, 82, 475–478. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Castellano, L.E.; Özçelik, R.; Hernandez, L.L.; Bruckmaier, R.M. Short Communication: Supplementation of Colostrum and Milk with 5-Hydroxy-l-Tryptophan Affects Immune Factors but Not Growth Performance in Newborn Calves. J. Dairy Sci. 2018, 101, 794–800. [Google Scholar] [CrossRef]
- Marrero, M.G.; Dado-Senn, B.; Field, S.L.; da Silva, D.R.; Skibiel, A.L.; Laporta, J. Increasing Serotonin Bioavailability in Preweaned Dairy Calves Impacts Hematology, Growth, and Behavior. Domest. Anim. Endocrinol. 2019, 69, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Namkung, J.; Kim, H.; Park, S. Peripheral Serotonin: A New Player in Systemic Energy Homeostasis. Mol. Cells 2015, 38, 1023–1028. [Google Scholar] [CrossRef]
- Erspamer, V. Concerning the 5-hydroxytryptamine (enteramine) content of the gastrointestinal tract lining. Naturwissenschaften 1953, 40, 318–319. [Google Scholar] [CrossRef]
- Erspamer, V. Pharmacology of indole-alkylamines. Pharmacol. Rev. 1954, 6, 425–487. [Google Scholar]
- Twarog, B.M.; Page, I.H. Serotonin Content of Some Mammalian Tissues and Urine and a Method for Its Determination. Am. J. Physiol. 1953, 175, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, P.; Habibi, M.; Roberts, K.; Sutton, J.; Shili, C.N.; Lin, D.; Pezeshki, A. Dietary Tryptophan Supplementation Alters Fat and Glucose Metabolism in a Low-Birthweight Piglet Model. Nutrients 2021, 13, 2561. [Google Scholar] [CrossRef]
- Wessels, A.G.; Kluge, H.; Hirche, F.; Kiowski, A.; Schutkowski, A.; Corrent, E.; Bartelt, J.; König, B.; Stangl, G.I. High Leucine Diets Stimulate Cerebral Branched-Chain Amino Acid Degradation and Modify Serotonin and Ketone Body Concentrations in a Pig Model. PLoS ONE 2016, 11, e0150376. [Google Scholar] [CrossRef] [PubMed]
- Cowley, M.A.; Smart, J.L.; Rubinstein, M.; Cerdán, M.G.; Diano, S.; Horvath, T.L.; Cone, R.D.; Low, M.J. Leptin Activates Anorexigenic POMC Neurons through a Neural Network in the Arcuate Nucleus. Nature 2001, 411, 480–484. [Google Scholar] [CrossRef]
- Sohn, J.-W.; Xu, Y.; Jones, J.E.; Wickman, K.; Williams, K.W.; Elmquist, J.K. Serotonin 2C Receptor Activates a Distinct Population of Arcuate Pro-Opiomelanocortin Neurons via TRPC Channels. Neuron 2011, 71, 488–497. [Google Scholar] [CrossRef] [Green Version]
- Noaman, I.M. The Effect of Serotonin on Leptin and Grelin Hormones Concentrations in Female Rats. Kufa J. Vet. Med. Sci. 2015, 6, 136–144. [Google Scholar]
Variable | Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CTL | GLN | GLNB | |||
Baseline BW (28 d), kg | 57.3 | 57.8 | 57.7 | 0.4 | 0.32 |
Pre-weaning (33 to 35 d) | |||||
Starter feed intake, kg/d | 0.08 | 0.06 | 0.14 | 0.08 | 0.74 |
Drinking water intake, kg/d | 2.62 | 2.02 | 2.47 | 0.42 | 0.59 |
Body measurements (35 d) 2 | |||||
BW, kg | 62.6 | 63.2 | 64.4 | 1.9 | 0.81 |
HH, cm | 86.3 | 86.5 | 87.4 | 0.7 | 0.48 |
HW, cm | 22.3 | 22.1 | 22.6 | 0.3 | 0.54 |
BL, cm | 80.1 | 79.8 | 81.0 | 1.1 | 0.73 |
ADG, kg/d | 0.86 | 0.83 | 0.88 | 0.10 | 0.92 |
During weaning (36 d to complete weaning) | |||||
The first week (36 to 42 d of age) | |||||
Starter feed intake, kg/d | 0.46 | 0.38 | 0.45 | 0.04 | 0.42 |
Drinking water intake, kg/d | 5.28 a | 4.85 ab | 4.32 b | 0.19 | <0.01 |
BW (42 d), kg | 64.0 | 64.0 | 66.4 | 1.9 | 0.62 |
ADG, kg/d | 0.18 | 0.09 | 0.32 | 0.1 | 0.26 |
The remainder of the days | |||||
Starter feed intake, kg/d | 0.89 a | 0.73 ab | 0.68 b | 0.04 | <0.01 |
Drinking water intake, kg/d | 4.99 a | 4.57 ab | 4.13 b | 0.19 | 0.02 |
Body measurements (49 d) | |||||
BW, kg | 69.8 | 68.1 | 70.3 | 2.1 | 0.74 |
HH, cm | 89.6 | 90.0 | 90.5 | 0.7 | 0.70 |
HW, cm | 22.9 | 23.2 | 23.2 | 0.3 | 0.74 |
BL, cm | 83.7 | 84.8 | 85.3 | 1.3 | 0.69 |
Age at complete weaning | 50.2 | 50.6 | 49.9 | 2.0 | 0.90 |
Post-weaning | |||||
First 14 d post-weaning | |||||
Starter feed intake, kg/d | 2.21 a | 2.01 b | 1.82 c | 0.03 | <0.01 |
Drinking water intake, kg/d | 9.52 a | 9.52 a | 7.84 b | 0.16 | <0.01 |
At 70 d of age | |||||
BW, kg | 91.8 | 88.9 | 89.4 | 1.8 | 0.48 |
HH, cm | 94.3 | 95.1 | 94.3 | 0.7 | 0.70 |
HW, cm | 24.8 | 24.8 | 24.5 | 0.3 | 0.73 |
BL, cm | 90.1 | 90.0 | 90.5 | 1.1 | 0.95 |
63 to 70 d | |||||
ADG, kg/d | 0.77 | 0.92 | 1.08 | 0.07 | 0.08 |
ADG: SFI 2 | 0.29 b | 0.36 ab | 0.50 a | 0.07 | 0.02 |
Metabolite | Pre-Weaning 1 | During Weaning 2 | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CTL | GLN | GLNB | CTL | GLN | GLNB | Trt | Period | Trt × Period | ||
Essential AA, μmol/L | ||||||||||
Met | 0.4 | 0.5 | 0.8 | 0.5 | 0.4 | 0.7 | 0.2 | 0.27 | 0.96 | 0.64 |
Lys | 12.9 | 17.5 | 9.6 | 17.4 | 11.8 | 10.4 | 3.1 | 0.15 | 0.95 | 0.12 |
Ile | 28.9 | 29.9 | 36.6 | 39.0 | 37.4 | 44.9 | 3.9 | 0.13 | <0.01 | 0.87 |
Leu | 43.8 | 44.3 | 45.8 | 42.5 | 38.9 | 42.6 | 5.0 | 0.83 | 0.30 | 0.86 |
Val | 78.7 | 86.6 | 88.8 | 83.7 | 81.0 | 94.9 | 8.9 | 0.38 | 0.75 | 0.65 |
Phe | 2.9 | 4.4 | 4.7 | 5.0 | 4.9 | 5.5 | 1.0 | 0.47 | 0.10 | 0.59 |
Thr | 22.5 | 27.0 | 23.3 | 24.5 | 24.9 | 22.0 | 2.9 | 0.43 | 0.79 | 0.59 |
Total BCAA | 151.1 | 159.7 | 172.1 | 164.8 | 158.1 | 182.9 | 15.3 | 0.18 | 0.49 | 0.99 |
Gln + Glu | 11.0 | 12.2 | 15.0 | 17.6 | 17.8 | 16.4 | 4.9 | 0.95 | 0.08 | 0.67 |
Gly | 67.2 | 71.3 | 73.2 | 87.5 | 102.7 | 98.6 | 10.0 | 0.45 | <0.01 | 0.78 |
Ala | 35.0 | 41.7 | 38.1 | 38.9 | 42.8 | 29.6 | 5.5 | 0.32 | 0.58 | 0.06 |
Ser | 30.8 | 29.1 | 29.9 | 33.1 | 33.1 | 28.3 | 3.9 | 0.71 | 0.54 | 0.64 |
Asp | 0.4 | 0.2 | 0.3 | 0.2 | 0.3 | 0.3 | 0.1 | 0.85 | 0.65 | 0.29 |
Pro | 30.9 | 34.8 | 31.0 | 16.8 | 28.0 | 18.5 | 5.7 | 0.25 | 0.01 | 0.70 |
Tyr | 9.3 | 14.8 | 18.2 | 10.2 | 11.4 | 16.2 | 5.1 | 0.27 | 0.66 | 0.85 |
Glucose, mmol/L | 5.959 | 6.430 | 6.631 | 5.206 | 5.707 | 5.794 | 0.419 | 0.20 | <0.01 | 0.98 |
BHB, mmol/L | 0.026 | 0.022 | 0.029 | 0.049 a | 0.037 b | 0.042 ab | 0.004 | 0.03 | <0.01 | 0.18 |
Urea, mmol/L | 0.556 b | 0.605 ab | 0.612 ab | 0.633 ab | 0.688 ab | 0.717 a | 0.061 | 0.38 | 0.02 | 0.95 |
Haptoglobin, µg/mL | 0.75 | 0.58 | 0.63 | 0.95 | 0.81 | 0.82 | 0.19 | 0.52 | 0.07 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wickramasinghe, J.; Kaya, C.A.; Beitz, D.; Appuhamy, R. Early Stepdown Weaning of Dairy Calves with Glutamine and Branched-Chain Amino Acid Supplementations. Animals 2022, 12, 1474. https://doi.org/10.3390/ani12121474
Wickramasinghe J, Kaya CA, Beitz D, Appuhamy R. Early Stepdown Weaning of Dairy Calves with Glutamine and Branched-Chain Amino Acid Supplementations. Animals. 2022; 12(12):1474. https://doi.org/10.3390/ani12121474
Chicago/Turabian StyleWickramasinghe, Janaka, Can Ayhan Kaya, Donald Beitz, and Ranga Appuhamy. 2022. "Early Stepdown Weaning of Dairy Calves with Glutamine and Branched-Chain Amino Acid Supplementations" Animals 12, no. 12: 1474. https://doi.org/10.3390/ani12121474