Alternative Proteins for Fish Diets: Implications beyond Growth
Abstract
:Simple Summary
Abstract
1. Introduction
2. Impacts of Alternative Protein Sources on Fish Intestinal and Hepatic Health
3. Impacts of Alternative Protein Sources on Fish Microbiota
Protein Ingredient | Animal Model and Size | Inclusion Level (%) | Trial Duration | Biological Effects | References | |
---|---|---|---|---|---|---|
Microbiota | Relevant Performance, Physiological, and Feed Utilization Output | |||||
Algae | ||||||
Ascophyllum nodosum | Atlantic cod (Gadus morhua) 123 g | 10 | 12 weeks | ↓ Diversity ↑ Psychromonas, Propionogenium, and Clostridium genera | ↓ FBW | [88] |
Arthrospira (formerly Spirulina) platensis | European seabass (Dicentrarchus labrax) 19 g | 15 | 93 days | ↔ Richness and diversity ↓ Proteobacteria ↑ Persicirhabdus, Methylobacterium, Acinetobacter, and Sediminibacterium genera | ↓ FBW ↑ FCR | [87] |
Arthrospira platensis | Hybrid grouper (Epinephelus fuscoguttatus × E. lanceolatus) 28 g | 5, 15, 30 | 47 days | ↑ Diversity (Simpson index) in IL5 and IL30; Vibrio genus in IL15 ↓ Tolumonas genus in IL15 | ↔ SGR in IL15, and IL30 ↑ SGR in IL5 | [92] |
Gracilaria cornea | Gilthead seabream (Sparus aurata) 14 g | 5, 15, 25 | 70 days | ↑ Richness; Pseudomonas in IL15; Lactobacillus in IL25 ↓ Vibrio, loss of Photobacterium genus as dominant | ↔ FBW | [94] |
Schizochytrium limacinum | Rainbow trout (Oncorhynchus mykiss) 31 g | 5 | 15 weeks | ↑ Diversity, LAB | ↔ FBW, K | [91] |
Ulva ohnoi | Senegalese sole (Solea senegalensis) 11 g | 5 | 45 days | ↔ Richness ↑ Diversity in AI, Vibrio genus ↓ Escherichia and Tenacibaculum genera | ↓ FBW, WG | [93] |
Ulva pertrusa | White-spotted rabbitfish (Siganus canaliculatus) 15 g | 10 | 8 weeks | ↑ Ruminococcus, Clostridium, and Lachnospiraceae genera | ↔ FBW, SGR | [107] |
Ulva rigida | Atlantic cod (Gadus morhua) 123 g | 10 | 12 weeks | ↔ Community composition | ↔ FBW | [88] |
Ulva rigida | Gilthead seabream (Sparus aurata) 14 g | 5, 15, 25 | 70 days | ↑ Richness in IL15; Lactobacillus and Sphingomonas in IL5 and IL15 ↓ Richness in IL25 | ↑ FBW in IL25 | [94] |
Ulva rigida | Gilthead seabream (Sparus aurata) 14 g | 25 | 30 days | ↑ Richness, Lactobacillus brueckii ↓ Photobacterium genus | ↑ SR during challenge with Photobacterium damselae subs. piscicida | [95] |
Tetraselmis chuii or Phaeodactylum tricornutum | Gilthead seabream (Sparus aurata) 50 g | 10 alone 10 w/Bacillus | 30 days | ↓ Richness and diversity | ↑ Intestinal epithelial damage | [90] |
Hydrolysates | ||||||
Fish protein | Gilthead seabream (Sparus aurata) 122 g | 5 | 92 days | ↔ Richness ↓ Diversity (PD whole tree), Alteromonadales and Enterobacteriales, Pseudoalteromonas and Vibrio genera | ↔ FBW, SGR, FER | [100] |
Sardine | European seabass (Dicentrarchus labrax) larvae 8 DPH | 10, 19 | 25 days | Changes in Vibrio abundance (limited, due to method) | ↓ FBW ↑ SR, when challenged with V. anguillarum | [98] |
Tuna | Barramundi (Lates calcarifer) 2.5 g | 18 | 7 weeks | ↓ Vibrio ↑ Psychrobacter | ↑ SR, histomorphology | [102] |
Egg white | Gilthead seabream (Sparus aurata) 20 g | 7.5 | 8 weeks | ↔ Diversity ↑ Spirochaetes, Bacteroidetes ↓ Richness, Firmicutes | ↓ FBW, K, FI, SGR | [101] |
Feather meal | Atlantic salmon (Salmo salar) 305 g | 20 | 12 weeks | ↔ Dominant bacteria ↑ Abundance of allochtonous bacteria (families Corynebacteriaceae, Lactobacillaceae and Streptococcaceae), Pseudomonadaceae in PI ↓ Vibrionaceae in PI | ↔ FBW, SGR | [108] |
Poultry by-products | Turbot (Scophthalmus maximus) 10.3 g | 8, 16, 25, 34 | 8 weeks | ↑ Phyllobacterium, Sphingomonas, and Delftia with increasing IL; Enterococcus in IL34; fat synthesis by microbiome in IL25 (predicted) ↓ Vibrio | ↓ Diet digestibility ↑ FCR | [99] |
Yeasts | ||||||
Yeast (Saccharomyces cerevisiae) | European seabass (Dicentrarchus labrax) 19 g | 15 | 93 days | ↔ Richness and diversity ↓ Pseudomonadaceae, Lactobacillaceae, Pasteurellaceae families ↑ Persicirhabdus, Methylobacterium, and Sediminibacterium genera | ↑ FBW | [87] |
Yeast | Gilthead seabream (Sparus aurata) 122 g | 5 | 92 days | ↔ Richness ↓ Diversity (Shannon index), Pseudoalteromonas ↑ Bacillales and Clostridialesorders | ↔ FBW, SGR, FER | [100] |
Torula yeast (Cyberlindnera jadinii) | Atlantic salmon (Salmo salar) 1.14 g | 10, 20 | 35 days | ↓ Diversity in PP diets; LAB in IL20 | ↓ SGR in PP diets in IL20 | [106] |
Mixture of yeasts (Saccharomyces cerevisiae and Wickerhamomyces anomalus) | Rainbow trout (Oncorhynchus mykiss) 93 g | 10, 20, 30 | 10 weeks | ↔ Diversity in IL10 ↓ Diversity in IL20 and IL30; LAB in IL30 ↑ Candida albicans | ↔ FBW, FCR | [105] |
4. Impacts of Alternative Protein Sources on Immune Function and Disease Resistance
5. Impacts of Alternative Protein Sources on Stress Response
Ingredient | Model Species | Inclusion Level (%) | Trial Duration | Stress | References | |
---|---|---|---|---|---|---|
Stress Type | Main Observations | |||||
Algae | ||||||
Spirulina (Arthrospira platensis) | Gilthead seabream (Sparus aurata) 169 g | 5 | 30 days | Air exposure (60 s) | ↔ CORT ↓ GLU (after stress); LACT; SOD; coxiv; prdx3; ucp1 (before stress) ↑ IgM; CAT | [187] |
Spirulina (Arthrospira platensis) (raw or enzyme processed) | Barramundi (Lates calcarifer) 9 g | 7, 14, 28 | 8 weeks | Transport (3 h) | ↔ WG, FCR in raw IL7, IL14, and in enzyme processed IL7 and IL14 ↑ FCR in raw in IL28 ↓ WG in raw in IL28; CORT in all | [190] |
Gracilaria vermiculophylla | Gilthead seabream (Sparus aurata) 104 g | 5 | 34 days | Acute hypoxia (24 h; 1.3 mg O2/L) | ↔ FBW; FCR; WG ↑ CORT in hypoxia; SR after hypoxia; CORT in recovery ↓ CORT in normoxia; CAT in hypoxia; GPx in hypoxia; LPO in recovery | [194] |
Gracilaria sp. ethanolic extract waste and agar waste biomass | Gilthead seabream (Sparus aurata) 9 g | 5 | 59 days | Crowding (100 kg/m3 for 1 h) | ↔ SGR; FCR; CORT; GLU; LACT; LPO; GPx; GR; GST; GSH; LYZ; PRX ↑ AC50 (compared with non-supplemented) | [195] |
Pterocladia capillacea | European seabass (Dicentrarchus labrax) 0.14 g | 5, 10, 15 | 8 weeks | Air exposure (5 min) | ↑ FBW in IL5; SR in IL10 and IL15; FCR in IL15; ↑ SR after stress in IL5 and IL10 ↓ FBW in IL10 and IL15 | [196] |
Sargassum aquifolium | Nile tilapia (Oreochromis niloticus) 14 g | 5, 10, 15, 20 | 56 days | High stocking density (20 g/L) | ↔ FBW in IL15 and IL20 ↑ FBW in IL5 and IL10; SOD in IL10, IL15, and IL20; WG, RGR, TP, LIP, C3, LYZ, IgM, IgA, GSH, CAT, cat, gst, il-10 in all ↓ FCR at IL5 and IL10; ALT, AST in all | [192] |
Tetraselmis sp. CTP4 (defatted) | Gilthead seabream (Sparus aurata) 6 g | 10 | 61 days | Acute confinement (15 min) | ↔ FBW; FCR ↓ CORT after stress | [191] |
Ulva lactuca | Gilthead seabream (Sparus aurata) 104 g | 5 | 34 days | Acute hypoxia (24 h; 1.3 mg O2/L) | ↔ FBW; FCR; WG; CORT in normoxia ↑ LACT in hypoxia; CORT in hypoxia; SR after hypoxia; CORT in recovery ↓ LPO in recovery | [194] |
Ulva lactuca | European seabass (Dicentrarchus labrax) 0.23 g | 5, 10, 15 | 8 weeks | Air exposure (5 min) | ↑ FBW in IL5; WG in IL5 and IL10; SR in IL5; FCR in IL15 ↓ FCR in IL5; SR in IL15; SR after stress in IL10 and IL15 | [196] |
Hydrolysates | ||||||
Milkfish offal unprocessed (MO) or in hydrolysate (MOH) | Brown-marbled grouper (Epinephelus fuscoguttatus) 2.8 g | 5, 15, 25 | 8 weeks | Chasing (5 min) and agitation in tank | ↔ CORT, GLU in all ↑ FCE in MOH IL15 and IL25; WG in all MOH; FBW in all | [197] |
Yeasts | ||||||
Yeast (Saccharomyces cerevisiae) | Gilthead seabream (Sparus aurata) 169 g | 5 | 30 days | Air exposure (60 s) | ↔ CORT; GLU ↓ prdx3, csf-1, ucp1 (before stress); LACT, SOD, coxiv (after stress) | [187] |
Yeast (Saccharomyces cerevisiae) | Nile tilapia (Oreochromis niloticus) 21 g | 3, 5, 7 | 84 days | Gradual and acute heat (↔ 40 °C) Hypoxia for 24 h (↔ 0 mg/L) | ↑ FBW, SGR, PER in all; SR to acute stress in all; SR to hypoxia in IL7 ↓ FCR in all | [185] |
Yeast (Saccharomyces cerevisiae) | Rainbow trout (Oncorhynchus mykiss) 849 g | 32 | 4 weeks | Confinement by netting (1 min) | ↔ FAA levels (after stress) ↑ Met; SAR (before stress) | [189] |
Yeast (Saccharomyces cerevisiae) | Rainbow trout (Oncorhynchus mykiss) 129 g | 21.4 | 6 weeks | Thermal stress (11 > 18 °C) | ↑ FCR ↓ SGR; WG; cld6; tnfα; il-8 (in PI after stress w/yeast) | [186] |
Yeast (Saccharomyces cerevisiae) | Sunshine bass (Morone chrysops × M. saxatilis) 4.4 g | 27, 41, 50 | 9 weeks | Net chasing (2 min) | ↔ CORT, GLU, LYZ, OSM in all ↑ FCR in IL50 ↓ SGR in IL50; FBW, WG in all; SR w/ increasing IL | [188] |
Yeasts blend (Wickerhamamyces anomalus and Saccharomyces cerevisiae in a 70:30 ratio) | Rainbow trout (Oncorhynchus mykiss) 849 g | 35 | 4 weeks | Confinement by netting (1 min) | ↔ FAA levels (after stress) ↑ Met; SAR (before stress) | [189] |
6. Impacts of Alternative Protein Sources on Oxidative Stress
Protein Ingredient | Animal Model & Size | Inclusion Level (%) | Trial Duration | Biological Effects | References | |
---|---|---|---|---|---|---|
Performance and Feed Utilization | Antioxidant Status | |||||
Canola meal, processed | Nile tilapia (Oreochromis niloticus) 4 g | 12, 25, 37, 50 | 5 weeks | ↓ FBW, SGR in IL37 and 50 ↔ FBW, SGR in IL12 and 25; FCR, FI in all | ↑ sod, cat, gpx ↔ SOD, CAT, GPX, LPO in all | [214] |
Cottonseed meal | Ussuri catfish (Pseudobagrus ussuriensis) 2 g | 7, 13, 20, 27, 33, 40 | 8 weeks | ↓ FBW, SGR, FE, PER in IL27, 33 and 40; FI in IL33 and 40 ↑ VSI in IL20, 33 and 40 ↔ FBW, SGR, FE, PER in IL7, 13 and 20; FI in IL7, 13, 20 and 27; VSI in IL7, 13 and 27; HSI, K, SR in all | ↓ GPX in IL40; TAC in IL33 and 40 ↑ LPO in IL33 and 40 ↔ GPX in IL7, 13, 20, 27, and 33; TAC in IL7, 13, 20, and 27; LPO in IL7, 13, 20, and 27; SOD, CAT in all | [207] |
Rapeseed meal, fermented | Red seabream (Pagrus major) 4 g | 14, 28, 42, 56 | 9 weeks | ↓ FBW, SGR, FI in IL56 ↔ FBW, SGR, FI in IL14, 28 and 42 ↔ FCE, PER, HSI, VSI, SR in all | ↓ CAT, ROS in IL56; TAC in IL42 and 56 ↔ TAC in IL14 and 28; CAT in IL14, 28 and 42 | [206] |
Rapeseed meal, fermented | Red seabream (Pagrus major) 6 g | 12, 23, 34, 46 | 8 weeks | ↓ FBW, SGR, FCE, PER, SR in IL34 and 46 ↑ FBW, SGR in IL12; VSI in IL23, 34 and 46 ↔ FBW, SGR in IL23; FCE, PER, SR in IL12 and 23; K in IL12, 23 and 34; VSI in IL12; FI, HSI in all | ↓ TAC in IL23, 34 and 46; ROS in IL23; CAT in IL34 and 46 ↑ TAC in IL12 ↔ ROS in IL12, 34 and 46; CAT in IL12 and 23 | [215] |
Rubber seed meal | Tilapia (Oreochromis niloticus x O. aureus) 5 g | 10, 20, 30, 40 | 8 weeks | ↓ FBW in IL40 ↑ FCR in IL40 ↔ FBW, FCR in IL10, 20, and 30; FI, SR in all | ↑ GR in IL40; CAT in IL30 and 40 ↓ TAC in IL30 and 40 ↔ SOD, GPX, LPO; TAC, CAT in IL10 and 20; GR in IL10, 20 and 30 | [208] |
Soybean meal | Gilthead seabream (Sparus aurata) 16 g | 20, 39, 58 | 24 weeks | ↓ FBW, SGR in IL39 and 58 ↑ FCR in IL39 and 58 ↔ FBW, SGR, FCR in IL20 | ↑ CAT, SOD, GR, GST in IL58; GPX in all ↔ CAT, SOD, GR, GST in IL20 and 39 | [203] |
Soybean meal | Carassius auratus gibelio♀ × Cyprinus carpio♂ 13 g | 13, 26, 40, 54, 68 | 9 weeks | ↓ FBW in IL40, 54 and 68; SGR in IL26, 40, 54 and 68 ↑ FCR in IL54 and 68 ↔ FBW in IL13 and 26; SGR in IL13; FCR in IL13, 26 and 40; SR in all | ↓ SOD, CAT in IL68 ↔ SOD, CAT in IL13, 26, 40, and 54 | [216] |
Soybean meal, dehulled | Red seabream (Pagrus major) 7 g | 31, 39, 48, 56 | 8 weeks | ↑ FBW, SGR in IL31 and 39 ↔ FBW, SGR in IL48 and 56; PER, HSI, VSI, SR in all | ↔ TAC, ROS in all | [205] |
Soy protein concentrate | Starry flounder (Platichthys stellatus) 13 g | 14, 28, 42, 56, 70 | 10 weeks | ↓ FBW, SGR, FI, SR in IL56 and 70; FE, PER, K in IL70 ↔ FBW, SGR, FI, SR in IL14, 28 and 42; FE, PER, K in IL14, 28, 42, and 56; VSI, HSI in all | ↓ SOD, GPX in IL56 and 70 ↑ LPO in IL42, 56 and 70 ↔ SOD, CAT, GPX in IL14, 28 and 42 | [201] |
Soy protein concentrate | Large yellow croaker (Larimichthys crocea) 10 g | 11, 22, 34, 45 | 8 weeks | ↔ SGR, FCR, FI, SR in all | ↔ SOD, CAT, GPX, LPO in all | [204] |
Soy protein concentrate, supplemented with methionine and phosphate | Gilthead seabream (Sparus aurata) 27 g | 20, 38, 58 | 12 weeks | ↓ FBW, SGR, FE in IL58 ↔ FBW, SGR, FE in IL20 and 38; FI in all | ↑ GST in IL38 and 58; SOD in IL38; GR in IL58 ↔ GST in IL20; SOD in IL20 and 58; GR in IL20 and 38; CAT, GPX in all | [202] |
Distiller’s grains with solubles | Grass carp (Ctenopharyngodon idellus) 5 g | 10, 19 | 9 weeks | ↓ HSI, K in IL19 ↑ FBW, SGR in IL19; FE in all ↔ FBW, SGR, HSI, K in IL10; VSI, SR in all | ↓ SOD, GSH in all ↔ TAC, LPO in all | [210] |
Mixture of plant protein sources (corn gluten, wheat gluten, extruded peas, rapeseed meal and sweet white lupin) | Gilthead seabream (Sparus aurata) 17 g | 33, 52, 65 | 24 weeks | ↓ SGR in IL52 and 65; FBW, FI in all ↑ FE in IL33 and 52 ↔ SGR in IL33; FE in IL65; HSI in all | ↑ GSH/GSSH, GR, γGT in IL65 ↔ GSH, GR, γGT in IL33 and 52 | [209] |
Mixture of plant protein sources (soybean and sunflower meals) | African catfish (Clarias gariepinus) 51 g | 50, 55, 59, 60 | 4 weeks | Not determined | ↓ TAC in IL59 and 60; SOD, CAT in IL60; GSH in IL55 and 59 ↔ TAC in IL50 and 55; SOD, CAT in IL50, 55, 59; GSH in IL50 and 60 | [217] |
Mixture of plant and animals’ protein sources [fermented soybean meal and scallop by-product blend (3:2)] | Red seabream (Pagrus major) 3 g | 11, 23, 34, 46 | 6 weeks | ↓ FBW, SGR, FI, FE, K in IL34 and 46; PER in IL46 ↔ FBW, SGR, FI, FE, K in IL11 and 23; PER in IL11, 23 and 34; HSI, SR in all | ↓ TAC in all ↔ ROS in all | [205] |
Mussel meal | Ussuri catfish (Pseudobagrus ussuriensis) 5 g | 9, 18, 36 | 8 weeks | ↓ FBW, SGR, and FI in IL36 ↑ VSI in IL9; PER in IL18 and 36 ↔ FBW, SGR, FI in IL9 and 18; FE, PER in IL9; FCR, VSI in IL18 and 36; HSI, K, SR in all | ↓ SOD in IL9, 18 and 36; CAT in IL9; TAC in IL18 and 36 ↑ LPO in IL9, 18 and 36 ↔ TAC in IL9; CAT in IL18 and 36 | [211,218] |
Meat and bone meal | Ussuri catfish (Pseudobagrus ussuriensis) 5 g | 8 | 8 weeks | ↓ FBW, SGR, FE, PER, K ↑ VSI ↔ FI, HSI, SR | ↓ TAC, SOD, CAT ↔ LPO | [211] |
Poultry by-product meal | Barramundi (Lates calcarifer) 4 g | 70 | 6 weeks | ↓ FBW, SGR, FI ↑ FCR | ↓ GPX ↑ LPO | [55] |
Black soldier fly (Hermetia illucens) meal, defatted | Jian carp (Cyprinus carpio var. Jian) 35 gi | 3, 5, 8, 11 | 8 weeks | ↔ FBW, SGR, FI, FCR, PER, HSI, VSI, K in all | ↔ CAT in IL3, 5 and 8; SOD, LPO in all | [219] |
Cricket meal (Gryllus bimaculatus) | African catfish (Clarias gariepinus) 13 g | 26, 35 | 7 weeks | ↓ HSI in all ↑ SGR, FI in all ↔ FCR, PER, SR in all | ↑ CAT in IL35 ↔ CAT in IL26; SOD, GST in all | [220] |
Yellow mealworm (Tenebrio molitor) meal | Rainbow trout (Oncorhynchus mykiss) 116 g | 25, 50 | 13 weeks | Not determined | ↓ LPO in all ↑ G6PD in IL50; SOD, CAT, GR, GPX in all ↔ G6PD in IL25 | [212] |
Chlorella vulgaris | African catfish (Clarias gariepinus) 42 g | 13, 19 | 12 weeks | ↓ FCR in all ↑ SGR, K in IL19, FBW, PER, HSI in all ↔ SGR, K in IL13; FI in all | ↑ SOD, CAT in all ↔ GST in all | [213] |
Arthrospira platensis(formerly known as Spirulina) | African catfish (Clarias gariepinus) 42 g | 13, 19 | 12 weeks | ↓ FCR in all ↑ FBW, PER, HSI in all ↔ SGR, FI, K in all | ↑ SOD, CAT in all ↔ GST in all | [213] |
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Larsen, J.; Marshall, M. Farmed Fish Production Overtakes Beef; Earth Policy Institute: New Brunswick, NJ, USA, 2013; Available online: www.earth-policy.org/plan_b_updates/2013/update114 (accessed on 15 January 2022).
- FAO. The State of the World Fisheries and Aquaculture 2020. Sustainability in Action; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Glencross, B.D.; Baily, J.; Berntssen, M.H.G.; Hardy, R.; MacKenzie, S.; Tocher, D.R. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev. Aquac. 2020, 12, 703–758. [Google Scholar] [CrossRef] [Green Version]
- Hardy, R.W. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquac. Res. 2010, 41, 770–776. [Google Scholar] [CrossRef]
- Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, Å.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Galkanda-Arachchige, H.S.C.; Wilson, A.E.; Davis, D.A. Success of fishmeal replacement through poultry by-product meal in aquaculture feed formulations: A meta-analysis. Rev. Aquac. 2020, 12, 1624–1636. [Google Scholar] [CrossRef]
- Wan, A.H.L.; Davies, S.J.; Soler-Vila, A.; Fitzgerald, R.; Johnson, M.P. Macroalgae as a sustainable aquafeed ingredient. Rev. Aquac. 2019, 11, 458–492. [Google Scholar] [CrossRef]
- Thépot, V.; Campbell, A.H.; Rimmer, M.A.; Paul, N.A. Meta-analysis of the use of seaweeds and their extracts as immunostimulants for fish: A systematic review. Rev. Aquac. 2021, 13, 907–933. [Google Scholar] [CrossRef]
- Naiel, M.A.E.; Alagawany, M.; Patra, A.K.; El-Kholy, A.I.; Amer, M.S.; Abd El-Hack, M.E. Beneficial impacts and health benefits of macroalgae phenolic molecules on fish production. Aquaculture 2021, 534, 736186. [Google Scholar] [CrossRef]
- Shah, M.R.; Lutzu, G.A.; Alam, A.; Sarker, P.; Kabir Chowdhury, M.A.; Parsaeimehr, A.; Liang, Y.; Daroch, M. Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 2018, 30, 197–213. [Google Scholar] [CrossRef]
- Yarnold, J.; Karan, H.; Oey, M.; Hankamer, B. Microalgal aquafeeds as part of a circular bioeconomy. Trends Plant Sci. 2019, 24, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Valente, L.M.P.; Cabrita, A.R.J.; Maia, M.R.G.; Valente, I.M.; Engrola, S.; Fonseca, A.J.M.; Ribeiro, D.M.; Lordelo, M.; Martins, C.F.; Cunha, L.F.; et al. Microalgae as Feed Ingredients for Livestock Production and Aquaculture. In Microalgae; Galanakis, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 239–312. [Google Scholar]
- Nagappan, S.; Das, P.; AbdulQuadir, M.; Thaher, M.; Khan, S.; Mahata, C.; Al-Jabri, H.; Vatland, A.K.; Kumar, G. Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol. 2021, 341, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Ansari, F.A.; Guldhe, A.; Gupta, S.K.; Rawat, I.; Bux, F. Improving the feasibility of aquaculture feed by using microalgae. Environ. Sci. Pollut. Res. 2021, 28, 43234–43257. [Google Scholar] [CrossRef] [PubMed]
- Glencross, B.D.; Huyben, D.; Schrama, J.W. The application of single-cell ingredients in aquaculture feeds—A review. Fishes 2020, 5, 22. [Google Scholar] [CrossRef]
- Jones, S.W.; Karpol, A.; Friedman, S.; Maru, B.T.; Tracy, B.P. Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr. Opin. Biotechnol. 2020, 61, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Agboola, J.O.; Øverland, M.; Skrede, A.; Hansen, J.Ø. Yeast as major protein-rich ingredient in aquafeeds: A review of the implications for aquaculture production. Rev. Aquac. 2021, 13, 949–970. [Google Scholar] [CrossRef]
- Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kierończyk, B.; Józefiak, A. Insect meals in fish nutrition. Rev. Aquac. 2019, 11, 1080–1103. [Google Scholar] [CrossRef]
- Mousavi, S.; Zahedinezhad, S.; Loh, J.Y. A review on insect meals in aquaculture: The immunomodulatory and physiological effects. Int. Aquat. Res. 2020, 12, 100–115. [Google Scholar]
- Alfiko, Y.; Xie, D.; Astuti, R.T.; Wong, J.; Wang, L. Insects as a feed ingredient for fish culture: Status and trends. Aquac. Fish. 2022, 7, 166–178. [Google Scholar] [CrossRef]
- Liland, N.S.; Araujo, P.; Xu, X.X.; Lock, E.-J.; Radhakrishnan, G.; Prabhu, A.J.P.; Belghit, I. A meta-analysis on the nutritional value of insects in aquafeeds. J. Insects Food Feed 2021, 7, 743–759. [Google Scholar] [CrossRef]
- Weththasinghe, P.; Hansen, J.Ø.; Mydland, L.T.; Øverland, M. A systematic meta-analysis based review on black soldier fly (Hermetia illucens) as a novel protein source for salmonids. Rev. Aquac. 2022, 14, 938–956. [Google Scholar] [CrossRef]
- Tran, H.Q.; Nguyen, T.T.; Prokešová, M.; Gebauer, T.; van Doan, H.; Stejskal, V. Systematic review and meta-analysis of production performance of aquaculture species fed dietary insect meals. Rev. Aquac. 2022, in press. [CrossRef]
- Gasco, L.; Józefiak, A.; Henry, M. Beyond the protein concept: Health aspects of using edible insects on animals. J. Insects Food Feed 2021, 7, 715–741. [Google Scholar] [CrossRef]
- Herrera, M.; Mancera, J.M.; Costas, B. The use of dietary additives in fish stress mitigation: Comparative endocrine and physiological responses. Front. Endocrinol. 2019, 10, 447. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, S.; Wu, G. Nutrition and Functions of Amino Acids in Fish. In Amino Acids in Nutrition and Health: Amino Acids in the Nutrition of Companion, Zoo and Farm Animals; Wu, G., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 133–168. [Google Scholar]
- Andersen, S.M.; Waagbø, R.; Espe, M. Functional amino acids in fish nutrition, health and welfare. Front. Biosci. 2016, 8, 143–169. [Google Scholar]
- Siddik, M.A.B.; Howieson, J.; Fotedar, R.; Partridge, G.J. Enzymatic fish protein hydrolysates in finfish aquaculture: A review. Rev. Aquac. 2021, 13, 406–430. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Penn, M.; Thorsen, J.; Refstie, S.; Bakke, A.M. Important antinutrients in plant feedstuffs for aquaculture: An update on recent findings regarding responses in salmonids. Aquac. Res. 2010, 41, 333–344. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Gajardo, K.; Kortner, T.M.; Penn, M.; Gu, M.; Berge, G.M.; Bakke, A.M. Soya saponins induce enteritis in Atlantic salmon (Salmo salar L.). J. Agric. Food Chem. 2015, 63, 3887–3902. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Kortner, T.M.; Jaramillo-Torres, A.; Gamil, A.A.A.; Chikwati, E.; Li, Y.; Schmidt, M.; Herman, E.; Hymowitz, T.; Teimouri, S.; et al. Removal of three proteinaceous antinutrients from soybean does not mitigate soybean-induced enteritis in Atlantic salmon (Salmo salar, L.). Aquaculture 2020, 514, 734495. [Google Scholar] [CrossRef]
- Kumar, V.; Fawole, F.J.; Romano, N.; Hossain, M.S.; Labh, S.N.; Overturf, K.; Small, B.C. Insect (black soldier fly, Hermetia illucens) meal supplementation prevents the soybean meal-induced intestinal enteritis in rainbow trout and health benefits of using insect oil. Fish Shellfish Immunol. 2021, 109, 116–124. [Google Scholar] [CrossRef]
- Nimalan, N.; Sørensen, S.L.; Fečkaninová, A.; Koščová, J.; Mudroňová, D.; Gancarčíková, S.; Vatsos, I.N.; Bisa, S.; Kiron, V.; Sørensen, M. Mucosal barrier status in Atlantic salmon fed marine or plant-based diets supplemented with probiotics. Aquaculture 2022, 547, 737516. [Google Scholar] [CrossRef]
- Wang, Y.R.; Wang, L.; Zhang, C.X.; Song, K. Effects of substituting fishmeal with soybean meal on growth performance and intestinal morphology in orange-spotted grouper (Epinephelus coioides). Aquac. Rep. 2017, 5, 52–57. [Google Scholar] [CrossRef]
- Zhou, Z.; Yao, W.; Ye, B.; Wu, X.; Li, X.; Dong, Y. Effects of replacing fishmeal protein with poultry by-product meal protein and soybean meal protein on growth, feed intake, feed utilization, gut and liver histology of hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Aquaculture 2020, 516, 734503. [Google Scholar] [CrossRef]
- Viana, M.T.; Rombenso, A.N.; del Rio-Zaragoza, O.B.; Nomura, M.; Díaz-Argüello, R.; Mata-Sotres, J.A. Intestinal impairment of the California yellowtail, Seriola dorsalis, using soybean meal in the diet. Aquaculture 2019, 513, 734443. [Google Scholar] [CrossRef]
- Zhang, C.; Rahimnejad, S.; Wang, Y.R.; Lu, K.; Song, K.; Wang, L.; Mai, K. Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): Effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture 2018, 483, 173–182. [Google Scholar] [CrossRef]
- Wang, J.; Tao, Q.; Wang, Z.; Mai, K.; Xu, W.; Zhang, Y.; Ai, Q. Effects of fish meal replacement by soybean meal with supplementation of functional compound additives on intestinal morphology and microbiome of Japanese seabass (Lateolabrax japonicus). Aquac. Res. 2017, 48, 2186–2197. [Google Scholar] [CrossRef]
- Fuentes-Quesada, J.P.; Viana, M.T.; Rombenso, A.N.; Guerrero-Rentería, Y.; Nomura-Solís, M.; Gomez-Calle, V.; Lazo, J.P.; Mata-Sotres, J.A. Enteritis induction by soybean meal in Totoaba macdonaldi diets: Effects on growth performance, digestive capacity, immune response and distal intestine integrity. Aquaculture 2018, 495, 78–89. [Google Scholar] [CrossRef]
- de Rodrigáñez, M.A.S.; Fuentes, J.; Moyano, F.J.; Ribeiro, L. In vitro evaluation of the effect of a high plant protein diet and nucleotide supplementation on intestinal integrity in meagre (Argyrosomus regius). Fish Physiol. Biochem. 2013, 39, 1365–1370. [Google Scholar] [CrossRef]
- Knudsen, D.; Jutfelt, F.; Sundh, H.; Sundell, K.; Koppe, W.; Frøkiær, H. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). Br. J. Nutr. 2008, 100, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Refstie, S.; Storebakken, T.; Baeverfjord, G.; Roem, A.J. Long-term protein and lipid growth of Atlantic salmon (Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level. Aquaculture 2001, 193, 91–106. [Google Scholar] [CrossRef]
- Aragão, C.; Cabano, M.; Colen, R.; Fuentes, J.; Dias, J. Alternative formulations for gilthead seabream diets: Towards a more sustainable production. Aquac. Nutr. 2020, 26, 444–455. [Google Scholar] [CrossRef]
- Vidakovic, A.; Langeland, M.; Sundh, H.; Sundell, K.; Olstorpe, M.; Vielma, J.; Kiessling, A.; Lundh, T. Evaluation of growth performance and intestinal barrier function in Arctic charr (Salvelinus alpinus) fed yeast (Saccharomyces cerevisiae), fungi (Rhizopus oryzae) and blue mussel (Mytilus edulis). Aquac. Nutr. 2016, 22, 1348–1360. [Google Scholar] [CrossRef]
- Martínez-Llorens, S.; Baeza-Ariño, R.; Nogales-Mérida, S.; Jover-Cerdá, M.; Tomás-Vidal, A. Carob seed germ meal as a partial substitute in gilthead sea bream (Sparus aurata) diets: Amino acid retention, digestibility, gut and liver histology. Aquaculture 2012, 338–341, 124–133. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Pham, H.D.; Francis, D.S.; Vo, B.V.; Shahjahan, M. Dietary supplementation of fish protein hydrolysate in high plant protein diets modulates growth, liver and kidney health, and immunity of barramundi (Lates calcarifer). Aquac. Nutr. 2021, 27, 86–98. [Google Scholar] [CrossRef]
- Johny, A.; Berge, G.M.; Bogevik, A.S.; Krasnov, A.; Ruyter, B.; Fæste, C.K.; Østbye, T.K.K. Sensitivity to dietary wheat gluten in Atlantic salmon indicated by gene expression changes in liver and intestine. Genes 2020, 11, 1339. [Google Scholar] [CrossRef]
- Voorhees, J.M.; Barnes, M.E.; Chipps, S.R.; Brown, M.L. Bioprocessed soybean meal replacement of fish meal in rainbow trout (Oncorhynchus mykiss) diets. Cogent Food Agric. 2019, 5, 1579482. [Google Scholar] [CrossRef]
- Rimoldi, S.; Finzi, G.; Ceccotti, C.; Girardello, R.; Grimaldi, A.; Ascione, C.; Terova, G. Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal. Fish. Aquat. Sci. 2016, 19, 40. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Chang, K.; Chen, J.; Zhao, X.; Gao, S. Dietary sodium butyrate supplementation attenuates intestinal inflammatory response and improves gut microbiota composition in largemouth bass (Micropterus salmoides) fed with a high soybean meal diet. Fish Physiol. Biochem. 2021, 47, 1805–1819. [Google Scholar] [CrossRef]
- Amer, S.A.; Osman, A.; Al-Gabri, N.A.; Elsayed, S.A.M.; Abd El-Rahman, G.I.; Elabbasy, M.T.; Ahmed, S.A.A.; Ibrahim, R.E. The effect of dietary replacement of fish meal with whey protein concentrate on the growth performance, fish health, and immune status of Nile tilapia fingerlings, Oreochromis niloticus. Animals 2019, 9, 1003. [Google Scholar] [CrossRef] [Green Version]
- Sallam, A.E.; El-feky, M.M.M.; Ahmed, M.S.; Mansour, A.T. Potential use of whey protein as a partial substitute of fishmeal on growth performance, non-specific immunity and gut histological status of juvenile European seabass, Dicentrarchus labrax. Aquac. Res. 2022, 53, 1527–1541. [Google Scholar] [CrossRef]
- Cardinaletti, G.; Randazzo, B.; Messina, M.; Zarantoniello, M.; Giorgini, E.; Zimbelli, A.; Bruni, L.; Parisi, G.; Olivotto, I.; Tulli, F. Effects of graded dietary inclusion level of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals 2019, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Chaklader, M.R.; Siddik, M.A.B.; Fotedar, R. Total replacement of fishmeal with poultry by-product meal affected the growth, muscle quality, histological structure, antioxidant capacity and immune response of juvenile barramundi, Lates calcarifer. PLoS ONE 2020, 15, e0242079. [Google Scholar] [CrossRef] [PubMed]
- Chaklader, M.R.; Siddik, M.A.B.; Fotedar, R.; Howieson, J. Insect larvae, Hermetia illucens in poultry by-product meal for barramundi, Lates calcarifer modulates histomorphology, immunity and resistance to Vibrio harveyi. Sci. Rep. 2019, 9, 16703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Yun, B.; Xue, M.; Wang, J.; Wu, X.; Zheng, Y.; Han, F. Effects of fish meal quality and fish meal substitution by animal protein blend on growth performance, flesh quality and liver histology of Japanese seabass (Lateolabrax japonicus). Aquaculture 2013, 372–375, 52–61. [Google Scholar] [CrossRef]
- Ye, H.; Zhou, Y.; Su, N.; Wang, A.; Tan, X.; Sun, Z.; Zou, C.; Liu, Q.; Ye, C. Effects of replacing fish meal with rendered animal protein blend on growth performance, hepatic steatosis and immune status in hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Aquaculture 2019, 511, 734203. [Google Scholar] [CrossRef]
- Khosravi, S.; Bui, H.T.D.; Herault, M.; Fournier, V.; Kim, K.-D.K.-W.; Lee, B.-J.; Kim, K.-D.K.-W.; Lee, K.-J. Supplementation of protein hydrolysates to a low-fishmeal diet improves growth and health status of juvenile olive flounder, Paralichthys olivaceus. J. World Aquac. Soc. 2018, 49, 897–911. [Google Scholar] [CrossRef]
- Grammes, F.; Reveco, F.E.; Romarheim, O.H.; Landsverk, T.; Mydland, L.T.; Øverland, M. Candida utilis and Chlorella vulgaris counteract intestinal inflammation in Atlantic salmon (Salmo salar L.). PLoS ONE 2013, 8, e83213. [Google Scholar]
- Romarheim, O.H.; Hetland, D.L.; Skrede, A.; Overland, M.; Mydland, L.T.; Landsverk, T. Prevention of soya-induced enteritis in Atlantic salmon (Salmo salar) by bacteria grown on natural gas is dose dependent and related to epithelial MHC II reactivity and CD8α + intraepithelial lymphocytes. Br. J. Nutr. 2013, 109, 1062–1070. [Google Scholar] [CrossRef] [Green Version]
- Richard, N.; Costas, B.; Machado, M.; Fernández-Boo, S.; Girons, A.; Dias, J.; Corraze, G.; Terrier, F.; Marchand, Y.; Skiba-Cassy, S. Inclusion of a protein-rich yeast fraction in rainbow trout plant-based diet: Consequences on growth performances, flesh fatty acid profile and health-related parameters. Aquaculture 2021, 544, 737132. [Google Scholar] [CrossRef]
- Messina, M.; Bulfon, C.; Beraldo, P.; Tibaldi, E.; Cardinaletti, G. Intestinal morpho-physiology and innate immune status of European sea bass (Dicentrarchus labrax) in response to diets including a blend of two marine microalgae, Tisochrysis lutea and Tetraselmis suecica. Aquaculture 2019, 500, 660–669. [Google Scholar] [CrossRef]
- Li, Y.; Kortner, T.M.; Chikwati, E.M.; Belghit, I.; Lock, E.J.; Krogdahl, Å. Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture 2020, 520, 734967. [Google Scholar] [CrossRef]
- Randazzo, B.; Zarantoniello, M.; Cardinaletti, G.; Cerri, R.; Giorgini, E.; Belloni, A.; Contò, M.; Tibaldi, E.; Olivotto, I. Hermetia illucens and poultry by-product meals as alternatives to plant protein sources in gilthead seabream (Sparus aurata) diet: A multidisciplinary study on fish gut status. Animals 2021, 11, 677. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, B.; Zarantoniello, M.; Gioacchini, G.; Cardinaletti, G.; Belloni, A.; Giorgini, E.; Faccenda, F.; Cerri, R.; Tibaldi, E.; Olivotto, I. Physiological response of rainbow trout (Oncorhynchus mykiss) to graded levels of Hermetia illucens or poultry by-product meals as single or combined substitute ingredients to dietary plant proteins. Aquaculture 2021, 538, 736550. [Google Scholar] [CrossRef]
- Chaklader, M.R.; Howieson, J.; Fotedar, R. Growth, hepatic health, mucosal barrier status and immunity of juvenile barramundi, Lates calcarifer fed poultry by-product meal supplemented with full-fat or defatted Hermetia illucens larval meal. Aquaculture 2021, 543, 737026. [Google Scholar] [CrossRef]
- Egerton, S.; Culloty, S.; Whooley, J.; Stanton, C.; Ross, R.P. The gut microbiota of marine fish. Front. Microbiol. 2018, 9, 873. [Google Scholar] [CrossRef] [PubMed]
- Butt, R.L.; Volkoff, H. Gut microbiota and energy homeostasis in fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, S.K. Role of gastrointestinal microbiota in fish. Aquac. Res. 2010, 41, 1553–1573. [Google Scholar] [CrossRef]
- Xiong, J.-B.; Nie, L.; Chen, J. Current understanding on the roles of gut microbiota in fish disease and immunity. Zool. Res. 2019, 40, 70. [Google Scholar]
- Ghanbari, M.; Kneifel, W.; Domig, K.J. A new view of the fish gut microbiome: Advances from next-generation sequencing. Aquaculture 2015, 448, 464–475. [Google Scholar] [CrossRef]
- Wang, A.R.; Ran, C.; Ringø, E.; Zhou, Z.G. Progress in fish gastrointestinal microbiota research. Rev. Aquac. 2018, 10, 626–640. [Google Scholar] [CrossRef] [Green Version]
- Yukgehnaish, K.; Kumar, P.; Sivachandran, P.; Marimuthu, K.; Arshad, A.; Paray, B.A.; Arockiaraj, J. Gut microbiota metagenomics in aquaculture: Factors influencing gut microbiome and its physiological role in fish. Rev. Aquac. 2020, 12, 1903–1927. [Google Scholar] [CrossRef]
- Ringø, E.; Zhou, Z.; Vecino, J.L.G.; Wadsworth, S.; Romero, J.; Krogdahl, A.; Olsen, R.E.; Dimitroglou, A.; Foey, A.; Davies, S.; et al. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac. Nutr. 2016, 22, 219–282. [Google Scholar] [CrossRef] [Green Version]
- Ringø, E.; Hoseinifar, S.H.; Ghosh, K.; Doan, H.V.; Beck, B.R.; Song, S.K. Lactic acid bacteria in finfish—An update. Front. Microbiol. 2018, 9, 1818. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, D.L.; Carnevali, O. Probiotic modulation of the gut microbiota of fish. In Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics; Merrifield, D., Ringø, E., Eds.; Wiley-Blackwell: Oxford, UK, 2014; pp. 185–222. [Google Scholar]
- Jorge, S.S.; Enes, P.; Serra, C.R.; Castro, C.; Iglesias, P.; Oliva Teles, A.; Couto, A. Short-term supplementation of gilthead seabream (Sparus aurata) diets with Nannochloropsis gaditana modulates intestinal microbiota without affecting intestinal morphology and function. Aquac. Nutr. 2019, 25, 1388–1398. [Google Scholar] [CrossRef]
- Souza, F.P.; Lima, E.C.S.; Urrea-Rojas, A.M.; Suphoronski, S.A.; Facimoto, C.T.; Bezerra Júnior, J.S.; Oliveira, T.E.S.; Pereira, U.P.; Santis, G.W.; Oliveira, C.A.L.; et al. Effects of dietary supplementation with a microalga (Schizochytrium sp.) on the hemato-immunological, and intestinal histological parameters and gut microbiota of Nile tilapia in net cages. PLoS ONE 2020, 15, e0226977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajardo, K.; Jaramillo-Torres, A.; Kortner, T.M.; Merrifield, D.L.; Tinsley, J.; Bakke, A.M.; Krogdahl, Å.; Björkroth, J. Alternative protein sources in the diet modulate microbiota and functionality in the distal intestine of Atlantic salmon (Salmo salar). Appl. Environ. Microbiol. 2017, 83, e02615-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kononova, S.V.; Zinchenko, D.V.; Muranova, T.A.; Belova, N.A.; Miroshnikov, A.I. Intestinal microbiota of salmonids and its changes upon introduction of soy proteins to fish feed. Aquac. Int. 2019, 27, 475–496. [Google Scholar] [CrossRef]
- Dai, Z.L.; Wu, G.; Zhu, W.Y. Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health. Front. Biosci. 2011, 16, 1768–1786. [Google Scholar] [CrossRef] [Green Version]
- Świątecka, D.; Markiewicz, L.H.; Wróblewska, B. Experimental immunology pea protein hydrolysate as a factor modulating the adhesion of bacteria to enterocytes, epithelial proliferation and cytokine secretion—An in vitro study. Cent. Eur. J. Immunol. 2012, 37, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.T.; Gallardo-Escárate, C. Microbiome dynamic modulation through functional diets based on pre- and probiotics (mannan-oligosaccharides and Saccharomyces cerevisiae) in juvenile rainbow trout (Oncorhynchus mykiss). J. Appl. Microbiol. 2017, 122, 1333–1347. [Google Scholar] [CrossRef]
- Shannon, E.; Conlon, M.; Hayes, M. Seaweed components as potential modulators of the gut microbiota. Mar. Drugs 2021, 19, 358. [Google Scholar] [CrossRef]
- Patel, A.K.; Singhania, R.R.; Awasthi, M.K.; Varjani, S.; Bhatia, S.K.; Tsai, M.-L.; Hsieh, S.-L.; Chen, C.-W.; Dong, C.-D. Emerging prospects of macro- and microalgae as prebiotic. Microb. Cell Factories 2021, 20, 112. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pascual, D.; Estellé, J.; Dutto, G.; Rodde, C.; Bernardet, J.-F.; Marchand, Y.; Duchaud, E.; Przybyla, C.; Ghigo, J.-M. Growth performance and adaptability of European sea bass (Dicentrarchus labrax) gut microbiota to alternative diets free of fish products. Microorganisms 2020, 8, 1346. [Google Scholar] [CrossRef] [PubMed]
- Keating, C.; Bolton-Warberg, M.; Hinchcliffe, J.; Davies, R.; Whelan, S.; Wan, A.H.L.; Fitzgerald, R.D.; Davies, S.J.; Ijaz, U.Z.; Smith, C.J. Temporal changes in the gut microbiota in farmed Atlantic cod (Gadus morhua) outweigh the response to diet supplementation with macroalgae. Anim. Microbiome 2021, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.A.; Dumas, A.; Yossa, R.; Overturf, K.E.; Bureau, D.P. Effects of soybean meal and high-protein sunflower meal on growth performance, feed utilization, gut health and gene expression in Arctic charr (Salvelinus alpinus) at the grow-out stage. Aquac. Nutr. 2018, 24, 1540–1552. [Google Scholar] [CrossRef]
- Cerezuela, R.; Fumanal, M.; Tapia-Paniagua, S.T.; Meseguer, J.; Moriñigo, M.A.; Esteban, M.A. Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res. 2012, 350, 477–489. [Google Scholar] [CrossRef]
- Lyons, P.P.; Turnbull, J.F.; Dawson, K.A.; Crumlish, M. Effects of low-level dietary microalgae supplementation on the distal intestinal microbiome of farmed rainbow trout Oncorhynchus mykiss (Walbaum). Aquac. Res. 2017, 48, 2438–2452. [Google Scholar] [CrossRef]
- Man, Y.B.; Zhang, F.; Ma, K.L.; Mo, W.Y.; Kwan, H.S.; Chow, K.L.; Man, K.Y.; Tsang, Y.F.; Li, W.C.; Wong, M.H. Growth and intestinal microbiota of Sabah giant grouper reared on food waste-based pellets supplemented with spirulina as a growth promoter and alternative protein source. Aquac. Rep. 2020, 18, 100553. [Google Scholar] [CrossRef]
- Tapia-Paniagua, S.T.; Fumanal, M.; Anguís, V.; Fernández-Díaz, C.; Alarcón, F.J.; Moriñigo, M.A.; Balebona, M.C. Modulation of intestinal microbiota in Solea senegalensis fed low dietary level of Ulva ohnoi. Front. Microbiol. 2019, 10, 171. [Google Scholar] [CrossRef]
- Rico, R.M.; Tejedor-Junco, M.T.; Tapia-Paniagua, S.T.; Alarcón, F.J.; Mancera, J.M.; López-Figueroa, F.; Balebona, M.C.; Abdala-Díaz, R.T.; Moriñigo, M.A. Influence of the dietary inclusion of Gracilaria cornea and Ulva rigida on the biodiversity of the intestinal microbiota of Sparus aurata juveniles. Aquac. Int. 2016, 24, 965–984. [Google Scholar] [CrossRef]
- Abdala-Diaz, R.T.; Garcia-Marquez, J.; Rico, R.M.; Gomez-Pinchetti, J.L.; Mancera, J.M.; Figueroa, F.L.; Alarcon, F.J.; Martinez-Manzanares, E.; Morinigo, M.A. Effects of a short pulse administration of Ulva rigida on innate immune response and intestinal microbiota in Sparus aurata juveniles. Aquac. Res. 2021, 52, 3038–3051. [Google Scholar] [CrossRef]
- Lopez-Santamarina, A.; Miranda, J.M.; Del Carmen Mondragon, A.; Lamas, A.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Potential use of marine seaweeds as prebiotics: A review. Molecules 2020, 25, 1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passos, R.; Correia, A.P.; Ferreira, I.; Pires, P.; Pires, D.; Gomes, E.; do Carmo, B.; Santos, P.; Simões, M.; Afonso, C.; et al. Effect on health status and pathogen resistance of gilthead seabream (Sparus aurata) fed with diets supplemented with Gracilaria gracilis. Aquaculture 2021, 531, 735888. [Google Scholar] [CrossRef]
- Kotzamanis, Y.P.; Gisbert, E.; Gatesoupe, F.J.; Zambonino Infante, J.; Cahu, C. Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 147, 205–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.-T.; Guo, R.; Jia, G.-W.; Zhang, Y.; Xia, H.; Li, X.-H. Effects of enzymatic hydrolysates from poultry by-products (EHPB) as an alternative source of fish meal on growth performance, hepatic proteome and gut microbiota of turbot (Scophthalmus maximus). Aquac. Nutr. 2020, 26, 1994–2006. [Google Scholar] [CrossRef]
- Rimoldi, S.; Gini, E.; Koch, J.F.A.; Iannini, F.; Brambilla, F.; Terova, G. Effects of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome. BMC Vet. Res. 2020, 16, 118. [Google Scholar]
- Naya-Català, F.; Wiggers, G.A.; Piazzon, M.C.; López-Martínez, M.I.; Estensoro, I.; Calduch-Giner, J.A.; Martínez-Cuesta, M.C.; Requena, T.; Sitjà-Bobadilla, A.; Miguel, M.; et al. Modulation of gilthead sea bream gut microbiota by a bioactive egg white hydrolysate: Interactions between bacteria and host lipid metabolism. Front. Mar. Sci. 2021, 8, 698484. [Google Scholar] [CrossRef]
- Gupta, S.K.; Fotedar, R.; Foysal, M.J.; Priyam, M.; Siddik, M.A.B.; Chaklader, M.R.; Dao, T.T.T.; Howieson, J. Impact of varied combinatorial mixture of non-fishmeal ingredients on growth, metabolism, immunity and gut microbiota of Lates calcarifer (Bloch, 1790) fry. Sci. Rep. 2020, 10, 17091. [Google Scholar] [CrossRef]
- Smith, P.; Willemsen, D.; Popkes, M.; Metge, F.; Gandiwa, E.; Reichard, M.; Valenzano, D.R. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. Elife 2017, 6, e27014. [Google Scholar] [CrossRef]
- Saleh, N.E.; Wassef, E.A.; Abdel-Mohsen, H.H. Sustainable fish and seafood production and processing. In Sustainable Fish Production and Processing; Galanakis, C.M., Ed.; Academic Press: Amsterdam, The Netherlands, 2022; pp. 259–291. [Google Scholar]
- Huyben, D.; Nyman, A.; Vidaković, A.; Passoth, V.; Moccia, R.; Kiessling, A.; Dicksved, J.; Lundh, T. Effects of dietary inclusion of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus on gut microbiota of rainbow trout. Aquaculture 2017, 473, 528–537. [Google Scholar] [CrossRef]
- Leeper, A.; Ekmay, R.; Knobloch, S.; Skírnisdóttir, S.; Varunjikar, M.; Dubois, M.; Smárason, B.Ö.; Árnason, J.; Koppe, W.; Benhaïm, D. Torula yeast in the diet of Atlantic salmon Salmo salar and the impact on growth performance and gut microbiome. Sci. Rep. 2022, 12, 567. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Li, Z.; Li, Y.; Wang, S.; Zhu, D.; Wen, X.; Li, S. Effects of dietary supplementation of Ulva pertusa and non-starch polysaccharide enzymes on gut microbiota of Siganus canaliculatus. J. Oceanol. Limnol. 2018, 36, 438–449. [Google Scholar] [CrossRef]
- Hartviksen, M.; Bakke, A.M.; Vecino, J.G.; Ringø, E.; Krogdahl, Å. Evaluation of the effect of commercially available plant and animal protein sources in diets for Atlantic salmon (Salmo salar L.): Digestive and metabolic investigations. Fish Physiol. Biochem. 2014, 40, 1621–1637. [Google Scholar] [CrossRef] [PubMed]
- Gasco, L.; Finke, M.; Huis, A. van Can diets containing insects promote animal health? J. Insects Food Feed 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Zhou, Z.; Karlsen, Ø.; He, S.; Olsen, R.E.; Yao, B.; Ringø, E. The effect of dietary chitin on the autochthonous gut bacteria of Atlantic cod (Gadus morhua L.). Aquac. Res. 2013, 44, 1889–1900. [Google Scholar] [CrossRef]
- Nawaz, A.; Bakhsh javaid, A.; Irshad, S.; Hoseinifar, S.H.; Xiong, H. The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish Shellfish Immunol. 2018, 76, 272–278. [Google Scholar] [CrossRef]
- Mikołajczak, Z.; Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals 2020, 10, 1031. [Google Scholar] [CrossRef]
- Antonopoulou, E.; Nikouli, E.; Piccolo, G.; Gasco, L.; Gai, F.; Chatzifotis, S.; Mente, E.; Kormas, K.A. Reshaping gut bacterial communities after dietary Tenebrio molitor larvae meal supplementation in three fish species. Aquaculture 2019, 503, 628–635. [Google Scholar] [CrossRef] [Green Version]
- Couto, A.; Serra, C.; Guerreiro, I.; Coutinho, F.; Castro, C.; Rangel, F.; Lavrador, A.; Monteiro, M.; Santos, R.; Peres, H.; et al. Black soldier fly meal effects on meagre health condition: Gut morphology, gut microbiota and humoral immune response. J. Insects Food Feed, 2022, in press. [CrossRef]
- Li, Y.; Bruni, L.; Jaramillo-Torres, A.; Gajardo, K.; Kortner, T.M.; Krogdahl, Å. Differential response of digesta- and mucosa-associated intestinal microbiota to dietary insect meal during the seawater phase of Atlantic salmon. Anim. Microbiome 2021, 3, 8. [Google Scholar] [CrossRef]
- Józefiak, A.; Nogales-Mérida, S.; Rawski, M.; Kierończyk, B.; Mazurkiewicz, J. Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Vet. Res. 2019, 15, 348. [Google Scholar] [CrossRef] [Green Version]
- Huyben, D.; Vidaković, A.; Werner Hallgren, S.; Langeland, M. High-throughput sequencing of gut microbiota in rainbow trout (Oncorhynchus mykiss) fed larval and pre-pupae stages of black soldier fly (Hermetia illucens). Aquaculture 2019, 500, 485–491. [Google Scholar] [CrossRef]
- Terova, G.; Rimoldi, S.; Ascione, C.; Gini, E.; Ceccotti, C.; Gasco, L. Rainbow trout (Oncorhynchus mykiss) gut microbiota is modulated by insect meal from Hermetia illucens prepupae in the diet. Rev. Fish Biol. Fish. 2019, 29, 465–486. [Google Scholar] [CrossRef]
- Rimoldi, S.; Gini, E.; Iannini, F.; Gasco, L.; Terova, G. The effects of dietary insect meal from Hermetia illucens prepupae on autochthonous gut microbiota of rainbow trout (Oncorhynchus mykiss). Animals 2019, 9, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimoldi, S.; Antonini, M.; Gasco, L.; Moroni, F.; Terova, G. Intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) may be improved by feeding a Hermetia illucens meal/low-fishmeal diet. Fish Physiol. Biochem. 2021, 47, 365–380. [Google Scholar] [CrossRef]
- Józefiak, A.; Nogales-Mérida, S.; Mikołajczak, Z.; Rawski, M.; Kierończyk, B.; Mazurkiewicz, J. The utilization of full-fat insect meal in rainbow trout nutrition: The effects on growth performance, intestinal microbiota and gastrointestinal tract histomorphology. Ann. Anim. Sci. 2019, 19, 747–765. [Google Scholar] [CrossRef] [Green Version]
- Bruni, L.; Pastorelli, R.; Viti, C.; Gasco, L.; Parisi, G. Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture 2018, 487, 56–63. [Google Scholar] [CrossRef]
- Gaudioso, G.; Marzorati, G.; Faccenda, F.; Weil, T.; Lunelli, F.; Cardinaletti, G.; Marino, G.; Olivotto, I.; Parisi, G.; Tibaldi, E.; et al. Processed animal proteins from insect and poultry by-products in a fish meal-free diet for rainbow trout: Impact on intestinal microbiota and inflammatory markers. Int. J. Mol. Sci. 2021, 22, 5454. [Google Scholar] [CrossRef]
- Panteli, N.; Mastoraki, M.; Lazarina, M.; Chatzifotis, S.; Mente, E.; Kormas, K.A.; Antonopoulou, E. Configuration of gut microbiota structure and potential functionality in two Teleosts under the influence of dietary insect meals. Microorganisms 2021, 9, 699. [Google Scholar] [CrossRef]
- Terova, G.; Gini, E.; Gasco, L.; Moroni, F.; Antonini, M.; Rimoldi, S. Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. J. Anim. Sci. Biotechnol. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Kiron, V. Fish immune system and its nutritional modulation for preventive health care. Anim. Feed Sci. Technol. 2012, 173, 111–133. [Google Scholar] [CrossRef]
- Bonaldo, A.; di Marco, P.; Petochi, T.; Marino, G.; Parma, L.; Fontanillas, R.; Koppe, W.; Mongile, F.; Finoia, M.G.; Gatta, P.P. Feeding turbot juveniles Psetta maxima L. with increasing dietary plant protein levels affects growth performance and fish welfare. Aquac. Nutr. 2015, 21, 401–413. [Google Scholar] [CrossRef]
- Azeredo, R.; Machado, M.; Kreuz, E.; Wuertz, S.; Oliva-Teles, A.; Enes, P.; Costas, B. The European seabass (Dicentrarchus labrax) innate immunity and gut health are modulated by dietary plant-protein inclusion and prebiotic supplementation. Fish Shellfish Immunol. 2017, 60, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Torrecillas, S.; Mompel, D.; Caballero, M.; Montero, D.; Merrifield, D.; Rodiles, A.; Robaina, L.; Zamorano, M.; Karalazos, V.; Kaushik, S.; et al. Effect of fishmeal and fish oil replacement by vegetable meals and oils on gut health of European sea bass (Dicentrarchus labrax). Aquaculture 2017, 468, 386–398. [Google Scholar] [CrossRef]
- Estruch, G.; Collado, M.C.; Monge-Ortiz, R.; Tomas-Vidal, A.; Jover-Cerda, M.; Penaranda, D.S.; Martinez, G.P.; Martinez-Llorens, S. Long-term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Vet. Res. 2018, 14, 302. [Google Scholar] [CrossRef] [PubMed]
- Bai, N.; Gu, M.; Liu, M.J.; Jia, Q.; Pan, S.H.; Zhang, Z.Y. Corn gluten meal induces enteritis and decreases intestinal immunity and antioxidant capacity in turbot (Scophthalmus maximus) at high supplementation levels. PLoS ONE 2019, 14, e0213867. [Google Scholar] [CrossRef] [Green Version]
- Hedrera, M.I.; Galdames, J.A.; Jimenez-Reyes, M.F.; Reyes, A.E.; Avendano-Herrera, R.; Romero, J.; Feijoo, C.G. Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS ONE 2013, 8, e69983. [Google Scholar] [CrossRef] [Green Version]
- Velez-Calabria, G.; Penaranda, D.S.; Jover-Cerda, M.; Llorens, S.M.; Tomas-Vidal, A. Successful inclusion of high vegetable protein sources in feed for rainbow trout without decrement in intestinal health. Animals 2021, 11, 3577. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, B.P.; Deng, J.M.; Dong, X.H.; Yang, Q.H.; Chi, S.Y.; Liu, H.Y.; Zhang, S.; Xie, S.W.; Zhang, H.T. Mechanisms by which fermented soybean meal and soybean meal induced enteritis in marine fish juvenile pearl gentian grouper. Front. Physiol. 2021, 12, 646853. [Google Scholar] [CrossRef]
- Seong, M.; Lee, S.; Lee, S.; Song, Y.; Bae, J.; Chang, K.; Bai, S.C. The effects of different levels of dietary fermented plant-based protein concentrate on growth, hematology and non-specific immune responses in juvenile olive flounder, Paralichthys olivaceus. Aquaculture 2018, 483, 196–202. [Google Scholar] [CrossRef]
- Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; el Basuini, M.F.; Zaineldin, A.I.; Mzengereza, K.; Moss, A.; Dawood, M.A.O. Effects of replacing fishmeal with fermented and non-fermented rapeseed meal on the growth, immune and antioxidant responses of red sea bream (Pagrus major). Aquac. Nutr. 2019, 25, 508–517. [Google Scholar] [CrossRef]
- Gisbert, E.; Skalli, A.; Campbell, J.; Solovyev, M.M.; Rodriguez, C.; Dias, J.; Polo, J. Spray-dried plasma promotes growth, modulates the activity of antioxidant defenses, and enhances the immune status of gilthead sea bream (Sparus aurata) fingerlings. J. Anim. Sci. 2015, 93, 278–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, T.; Zhong, L.; Yu, D.D.; Li, P.; Hu, Y. Evaluation of dried porcine solubles in diets of Rice field eel (Monopterus albus). Aquaculture 2021, 531, 735897. [Google Scholar] [CrossRef]
- Zhou, Q.C.; Zhao, J.; Li, P.; Wang, H.L.; Wang, L.G. Evaluation of poultry by-product meal in commercial diets for juvenile cobia (Rachycentron canadum). Aquaculture 2011, 322, 122–127. [Google Scholar] [CrossRef]
- Li, S.L.; Ding, G.T.; Wang, A.; Sang, C.Y.; Chen, N.S. Replacement of fishmeal by chicken plasma powder in diets for largemouth bass (Micropterus salmoides): Effects on growth performance, feed utilization and health status. Aquac. Nutr. 2019, 25, 1431–1439. [Google Scholar] [CrossRef]
- Weththasinghe, P.; Lagos, L.; Cortes, M.; Hansen, J.O.; Overland, M. Dietary inclusion of black soldier fly (Hermetia illucens) larvae meal and paste improved gut health but had minor effects on skin mucus proteome and immune response in Atlantic salmon (Salmo salar). Front. Immunol. 2021, 12, 599530. [Google Scholar] [CrossRef]
- Stenberg, O.K.; Holen, E.; Piemontese, L.; Liland, N.S.; Lock, E.-J.; Espe, M.; Belghit, I. Effect of dietary replacement of fish meal with insect meal on in vitro bacterial and viral induced gene response in Atlantic salmon (Salmo salar) head kidney leukocytes. Fish Shellfish Immunol. 2019, 91, 223–232. [Google Scholar] [CrossRef]
- Yildirim-Aksoy, M.; Eljack, R.; Schrimsher, C.; Beck, B.H. Use of dietary frass from black soldier fly larvae, Hermetia illucens, in hybrid tilapia (Nile x Mozambique, Oreocromis niloticus x O. mozambique) diets improves growth and resistance to bacterial diseases. Aquac. Rep. 2020, 17, 100373. [Google Scholar] [CrossRef]
- Hwang, D.; Lim, C.H.; Lee, S.H.; Goo, T.W.; Yun, E.Y. Effect of feed containing Hermetia illucens larvae immunized by Lactobacillus plantarum injection on the growth and immunity of rainbow trout (Oncorhynchus mykiss). Insects 2021, 12, 801. [Google Scholar] [CrossRef]
- Henry, M.A.; Gasco, L.; Chatzifotis, S.; Piccolo, G. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev. Comp. Immunol. 2018, 81, 204–209. [Google Scholar] [CrossRef]
- Su, J.Z.; Gong, Y.L.; Cao, S.P.; Lu, F.; Han, D.; Liu, H.K.; Jin, J.Y.; Yang, Y.X.; Zhu, X.M.; Xie, S.Q. Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol. 2017, 69, 59–66. [Google Scholar] [CrossRef]
- Jeong, S.M.; Khosravi, S.; Yoon, K.Y.; Kim, K.W.; Lee, B.J.; Hur, S.W.; Lee, S.M. Mealworm, Tenebrio molitor, as a feed ingredient for juvenile olive flounder, Paralichthys olivaceus. Aquac. Rep. 2021, 20, 100747. [Google Scholar] [CrossRef]
- Ido, A.; Iwai, T.; Ito, K.; Ohta, T.; Mizushige, T.; Kishida, T.; Miura, C.; Miura, T. Dietary effects of housefly (Musca domestica) (Diptera: Muscidae) pupae on the growth performance and the resistance against bacterial pathogen in red sea bream (Pagrus major) (Perciformes: Sparidae). Appl. Entomol. Zool. 2015, 50, 213–221. [Google Scholar] [CrossRef]
- Lin, Y.H.; Mui, J.J. Evaluation of dietary inclusion of housefly maggot (Musca domestica) meal on growth, fillet composition and physiological responses for barramundi, Lates calcarifer. Aquac. Res. 2017, 48, 2478–2485. [Google Scholar] [CrossRef]
- Alves, A.P.D.; Paulino, R.R.; Pereira, R.T.; da Costa, D.V.; Rosa, P.V.E. Nile tilapia fed insect meal: Growth and innate immune response in different times under lipopolysaccharide challenge. Aquac. Res. 2021, 52, 529–540. [Google Scholar] [CrossRef]
- Amer, A.A.; El-Nabawy, E.M.; Gouda, A.H.; Dawood, M.A.O. The addition of insect meal from Spodoptera littoralis in the diets of Nile tilapia and its effect on growth rates, digestive enzyme activity and health status. Aquac. Res. 2021, 52, 5585–5594. [Google Scholar] [CrossRef]
- Wan, A.H.L.; Snellgrove, D.L.; Davies, S.J. A comparison between marine and terrestrial invertebrate meals for mirror carp (Cyprinus carpio) diets: Impact on growth, haematology and health. Aquac. Res. 2017, 48, 5004–5016. [Google Scholar] [CrossRef]
- García-Márquez, J.; Rico, R.M.; Sánchez-Saavedra, M.P.; Gómez-Pinchetti, J.L.; Acién, F.G.; Figueroa, F.L.; Alarcón, F.J.; Moriñigo, M.Á.; Abdala-Díaz, R.T. A short pulse of dietary algae boosts immune response and modulates fatty acid composition in juvenile Oreochromis niloticus. Aquac. Res. 2020, 51, 4397–4409. [Google Scholar] [CrossRef]
- Passos, R.; Correia, A.P.; Pires, D.; Pires, P.; Ferreira, I.; Simoes, M.; do Carmo, B.; Santos, P.; Pombo, A.; Afonso, C.; et al. Potential use of macroalgae Gracilaria gracilis in diets for European seabass (Dicentrarchus labrax): Health benefits from a sustainable source. Fish Shellfish Immunol. 2021, 119, 105–113. [Google Scholar] [CrossRef]
- Wan, A.H.L.; Soler-Vila, A.; O’Keeffe, D.; Casburn, P.; Fitzgerald, R.; Johnson, M.P. The inclusion of Palmaria palmata macroalgae in Atlantic salmon (Salmo salar) diets: Effects on growth, haematology, immunity and liver function. J. Appl. Phycol. 2016, 28, 3091–3100. [Google Scholar] [CrossRef]
- Cerezuela, R.; Guardiola, F.A.; Meseguer, J.; Esteban, M.A. Enrichment of gilthead seabream (Sparus aurata L.) diet with microalgae: Effects on the immune system. Fish Physiol. Biochem. 2012, 38, 1729–1739. [Google Scholar] [CrossRef]
- Peixoto, D.; Pinto, W.; Goncalves, A.T.; Machado, M.; Reis, B.; Silva, J.; Navalho, J.; Dias, J.; Conceicao, L.; Costas, B. Microalgal biomasses have potential as ingredients in microdiets for Senegalese sole (Solea senegalensis) post-larvae. J. Appl. Phycol. 2021, 33, 2241–2250. [Google Scholar] [CrossRef]
- Reis, B.; Ramos-Pinto, L.; Martos-Sitcha, J.A.; Machado, M.; Azeredo, R.; Fernández-Boo, S.; Engrola, S.; Unamunzaga, C.; Calduch-Giner, J.; Conceição, L.E.C.; et al. Health status in gilthead seabream (Sparus aurata) juveniles fed diets devoid of fishmeal and supplemented with Phaeodactylum tricornutum. J. Appl. Phycol. 2021, 33, 979–996. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Qiu, M.; Xu, W.; Gao, Z.; Shao, R.; Qi, Z.T. Effects of dietary administration of Chlorella on the immune status of gibel carp, Carassius auratus gibelio. Ital. J. Anim. Sci. 2014, 13, 3168. [Google Scholar] [CrossRef]
- Saberi, A.; Zorriehzahra, M.J.; Emadi, H.; Kakoolaki, S.; Fatemi, S.M.R. Effects of Chlorella vulgaris on blood and immunological parameters of Caspian Sea salmon (Salmo trutta caspius) fry exposed to Viral Nervous Necrosis (VNN) virus. Iran. J. Fish. Sci. 2017, 16, 494–510. [Google Scholar]
- Quico, C.A.; Astocondor, M.M.; Ortega, R.A. Dietary supplementation with Chlorella peruviana improve the growth and innate immune response of rainbow trout Oncorhynchus mykiss fingerlings. Aquaculture 2021, 533, 736117. [Google Scholar] [CrossRef]
- El-Habashi, N.; Fadl, S.E.; Farag, H.F.; Gad, D.M.; Elsadany, A.Y.; el Gohary, M.S. Effect of using Spirulina and Chlorella as feed additives for elevating immunity status of Nile tilapia experimentally infected with Aeromonas hydrophila. Aquac. Res. 2019, 50, 2769–2781. [Google Scholar] [CrossRef]
- Guroy, B.; Guroy, D.; Bilen, S.; Kenanoglu, O.N.; Sahin, I.; Terzi, E.; Karadal, O.; Mantoglu, S. Effect of dietary Spirulina (Arthrospira platensis) on the growth performance, immune-related gene expression and resistance to Vibrio anguillarum in European seabass (Dicentrarchus labrax). Aquac. Res. 2022, 53, 2263–2274. [Google Scholar] [CrossRef]
- Chen, W.J.; Wang, Y.; Han, D.X.; Han, D.; Zhu, X.M.; Xie, S.Q.; Long, F.P.; Jia, J.; Hu, Q. Effects of dietary supplementation with filamentous microalgae (Oedocladium sp. or Tribonema ultriculosum) on growth performance, fillet fatty acid composition, skin pigmentation, and immune response of yellow catfish Pelteobagrus fulvidraco. J. World Aquac. Soc. 2021, 52, 1273–1289. [Google Scholar] [CrossRef]
- Bravo-Tello, K.; Ehrenfeld, N.; Solis, C.J.; Ulloa, P.E.; Hedrera, M.; Pizarro-Guajardo, M.; Paredes-Sabja, D.; Feijoo, C.G. Effect of microalgae on intestinal inflammation triggered by soybean meal and bacterial infection in zebrafish. PLoS ONE 2017, 12, e0187696. [Google Scholar]
- Machado, M.; Engrola, S.; Colen, R.; Conceição, L.E.C.; Dias, J.; Costas, B. Dietary methionine supplementation improves the European seabass (Dicentrarchus labrax) immune status following long-term feeding on fishmeal-free diets. Br. J. Nutr. 2020, 124, 890–902. [Google Scholar] [CrossRef]
- Salze, G.P.; Davis, D.A. Taurine: A critical nutrient for future fish feeds. Aquaculture 2015, 437, 215–229. [Google Scholar] [CrossRef]
- Matsunari, H.; Furuita, H.; Yamamoto, T.; Kim, S.-K.; Sakakura, Y.; Takeuchi, T. Effect of dietary taurine and cystine on growth performance of juvenile red sea bream Pagrus major. Aquaculture 2008, 274, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Takagi, S.; Murata, H.; Goto, T.; Hatate, H.; Endo, M.; Yamashita, H.; Miyatake, H.; Ukawa, M. Role of taurine deficiency in inducing green liver symptom and effect of dietary taurine supplementation in improving growth in juvenile red sea bream Pagrus major fed non-fishmeal diets based on soy protein concentrate. Fish. Sci. 2011, 77, 235–244. [Google Scholar] [CrossRef]
- Li, M.; Lai, H.; Li, Q.; Gong, S.; Wang, R. Effects of dietary taurine on growth, immunity and hyperammonemia in juvenile yellow catfish Pelteobagrus fulvidraco fed all-plant protein diets. Aquaculture 2016, 450, 349–355. [Google Scholar] [CrossRef]
- Adeshina, I.; Abdel-Tawwab, M. Dietary taurine incorporation to high plant protein-based diets improved growth, biochemical, immunity, and antioxidants biomarkers of African catfish, Clarias gariepinus (B.). Fish Physiol. Biochem. 2020, 46, 1323–1335. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, G.; Li, Z.; Hu, Y.; Zhong, L.; Zhou, Q.; Peng, M. Effect of dietary taurine supplementation on growth, digestive enzyme, immunity and resistant to dry stress of rice field eel (Monopterus albus) fed low fish meal diets. Aquac. Res. 2018, 49, 2108–2118. [Google Scholar] [CrossRef]
- Cerqueira, M.; Schrama, D.; Silva, T.S.; Colen, R.; Engrola, S.A.D.; Conceição, L.E.C.; Rodrigues, P.M.L.; Farinha, A.P. How tryptophan levels in plant-based aquafeeds affect fish physiology, metabolism and proteome. J. Proteom. 2020, 221, 103782. [Google Scholar] [CrossRef]
- Ramos-Pinto, L.; Martos-Sitcha, J.A.; Reis, B.; Azeredo, R.; Fernandez-Boo, S.; Pérez-Sánchez, J.; Calduch-Giner, J.A.; Engrola, S.; Conceição, L.E.C.; Dias, J.; et al. Dietary tryptophan supplementation induces a transient immune enhancement of gilthead seabream (Sparus aurata) juveniles fed fishmeal-free diets. Fish Shellfish Immunol. 2019, 93, 240–250. [Google Scholar] [CrossRef]
- Wendelaar Bonga, S.E. The stress response in fish. Physiol. Rev. 1997, 77, 591–625. [Google Scholar] [CrossRef]
- Gorissen, M.; Flik, G. The endocrinology of the stress response in fish: An adaptation-physiological view. In Fish Physiology; Schreck, C.B., Tort, L., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Amsterdam, The Netherlands, 2016; Volume 35, pp. 75–111. [Google Scholar]
- Petitjean, Q.; Jean, S.; Gandar, A.; Côte, J.; Laffaille, P.; Jacquin, L. Stress responses in fish: From molecular to evolutionary processes. Sci. Total Environ. 2019, 684, 371–380. [Google Scholar] [CrossRef]
- Balasch, J.C.; Tort, L. Netting the stress responses in fish. Front. Endocrinol. 2019, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Sadoul, B.; Vijayan, M.M. Stress and growth. In Fish Physiology; Schreck, C.B., Tort, L., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Amsterdam, The Netherlands, 2016; Volume 35, pp. 167–205. [Google Scholar]
- Guo, H.; Dixon, B. Understanding acute stress-mediated immunity in teleost fish. Fish Shellfish Immunol. Rep. 2021, 2, 100010. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M. Effects of dietary protein levels and rearing density on growth performance and stress response of Nile tilapia, Oreochromis niloticus (L.). Int. Aquat. Res. 2012, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Hooley, C.G.; Barrows, F.T.; Paterson, J.; Sealey, W.M. Examination of the effects of dietary protein and lipid levels on growth and stress tolerance of juvenile tilapia, Oreochromis niloticus. J. World Aquac. Soc. 2014, 45, 115–126. [Google Scholar] [CrossRef]
- Lee, S.; Masagounder, K.; Hardy, R.W.; Small, B.C. Effects of lowering dietary fishmeal and crude protein levels on growth performance, body composition, muscle metabolic gene expression, and chronic stress response of rainbow trout (Oncorhynchus mykiss). Aquaculture 2019, 513, 734435. [Google Scholar] [CrossRef]
- Détrée, C.; Gonçalves, A.T. Transcriptome mining of apoptotic mechanisms in response to density and functional diets in Oncorhynchus mykiss and role in homeostatic regulation. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 31, 100595. [Google Scholar] [CrossRef]
- Abass, D.A.; Obirikorang, K.A.; Campion, B.B.; Edziyie, R.E.; Skov, P.V. Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus). Aquac. Int. 2018, 26, 843–855. [Google Scholar] [CrossRef]
- Huyben, D.; Vidakovic, A.; Sundh, H.; Sundell, K.; Kiessling, A.; Lundh, T. Haematological and intestinal health parameters of rainbow trout are influenced by dietary live yeast and increased water temperature. Fish Shellfish Immunol. 2019, 89, 525–536. [Google Scholar] [CrossRef]
- de Mattos, B.O.; López-Olmeda, J.F.; Guerra-Santos, B.; Ruiz, C.E.; García-Beltrán, J.M.; Ángeles-Esteban, M.; Sánchez-Vázquez, F.J.; Fortes-Silva, R. Coping with exposure to hypoxia: Modifications in stress parameters in gilthead seabream (Sparus aurata) fed spirulina (Arthrospira platensis) and brewer’s yeast (Saccharomyces cerevisiae). Fish Physiol. Biochem. 2019, 45, 1801–1812. [Google Scholar] [CrossRef]
- Gause, B.; Trushenski, J. Production performance and stress tolerance of sunshine bass raised on reduced fish meal feeds containing ethanol yeast. N. Am. J. Aquac. 2011, 73, 168–175. [Google Scholar] [CrossRef]
- Huyben, D.; Vidakovic, A.; Nyman, A.; Langeland, M.; Lundh, T.; Kiessling, A. Effects of dietary yeast inclusion and acute stress on post-prandial whole blood profiles of dorsal aorta-cannulated rainbow trout. Fish Physiol. Biochem. 2017, 43, 421–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vo, B.; Siddik, M.A.B.; Fotedar, R.; Chaklader, M.R.; Hanif, M.A.; Foysal, M.J.; Nguyen, H.Q. Progressive replacement of fishmeal by raw and enzyme-treated alga, Spirulina platensis influences growth, intestinal micromorphology and stress response in juvenile barramundi, Lates calcarifer. Aquaculture 2020, 529, 735741. [Google Scholar] [CrossRef]
- Pereira, H.; Sardinha, M.; Santos, T.; Gouveia, L.; Barreira, L.; Dias, J.; Varela, J. Incorporation of defatted microalgal biomass (Tetraselmis sp. CTP4) at the expense of soybean meal as a feed ingredient for juvenile gilthead seabream (Sparus aurata). Algal Res. 2020, 47, 101869. [Google Scholar] [CrossRef]
- Negm, S.S.; Ismael, N.E.M.; Ahmed, A.I.; Asely, A.M.; Naiel, M.A.E. The efficiency of dietary Sargassum aquifolium on the performance, innate immune responses, antioxidant activity, and intestinal microbiota of Nile Tilapia (Oreochromis niloticus) raised at high stocking density. J. Appl. Phycol. 2021, 33, 4067–4082. [Google Scholar] [CrossRef]
- Dai, Y.-L.; Jiang, Y.-F.; Nie, Y.-H.; Lu, Y.-A.; Kang, M.-C.; Jeon, Y.-J. Hepato-protective effect of fucoidan extracted from acid-processed Sargassum fusiformis in ethanol-treated Chang liver cells and in a zebrafish model. J. Appl. Phycol. 2020, 32, 4289–4298. [Google Scholar] [CrossRef]
- Magnoni, L.J.; Martos-Sitcha, J.A.; Queiroz, A.; Calduch-Giner, J.A.; Goncalves, J.F.M.; Rocha, C.M.R.; Abreu, H.T.; Schrama, J.W.; Ozorio, R.O.A.; Perez-Sanchez, J. Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata). Biol. Open 2017, 6, 897–908. [Google Scholar]
- Silva-Brito, F.; Guardiola, F.A.; Cavalheri, T.; Pereira, R.; Abreu, H.; Kijjoa, A.; Magnoni, L. Dietary supplementation with Gracilaria sp. by-products modulates stress response, antioxidant and immune systems of gilthead seabream (Sparus aurata) exposed to crowding. J. Appl. Phycol. 2020, 32, 4347–4359. [Google Scholar] [CrossRef]
- Wassef, E.A.; El-Sayed, A.-F.M.; Sakr, E.M. Pterocladia (Rhodophyta) and Ulva (Chlorophyta) as feed supplements for European seabass, Dicentrarchus labrax L., fry. J. Appl. Phycol. 2013, 25, 1369–1376. [Google Scholar] [CrossRef]
- Mamauag, R.E.P.; Ragaza, J.A. Growth and feed performance, digestibility and acute stress response of juvenile grouper (Epinephelus fuscoguttatus) fed diets with hydrolysate from milkfish offal. Aquac. Res. 2017, 48, 1638–1647. [Google Scholar] [CrossRef]
- Lanes, C.F.C.; Pedron, F.A.; Bergamin, G.T.; Bitencourt, A.L.; Dorneles, B.E.R.; Villanova, J.C.; Dias, K.C.; Riolo, K.; Oliva, S.; Savastano, D.; et al. Black Soldier Fly (Hermetia Illucens) Larvae and Prepupae Defatted Meals in Diets for Zebrafish (Danio Rerio). Animals 2021, 11, 720. [Google Scholar] [CrossRef]
- Kamilya, D.; Khan, M.I.R. Chitin and chitosan as promising immunostimulant for aquaculture. In Handbook of Chitin and Chitosan; Gopi, S., Thomas, S., Pius, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 761–771. [Google Scholar]
- Meshkini, S.; Tafy, A.-A.; Tukmechi, A.; Farhang-Pajuh, F. Effects of chitosan on hematological parameters and stress resistance in rainbow trout (Oncorhynchus mykiss). Vet. Res. Forum 2012, 3, 49–54. [Google Scholar] [PubMed]
- Li, P.Y.; Wang, J.Y.; Song, Z.D.; Zhang, L.M.; Zhang, H.; Li, X.X.; Pan, Q. Evaluation of soy protein concentrate as a substitute for fishmeal in diets for juvenile starry flounder (Platichthys stellatus). Aquaculture 2015, 448, 578–585. [Google Scholar] [CrossRef]
- Kokou, F.; Sarropoulou, E.; Cotou, E.; Kentouri, M.; Alexis, M.; Rigos, G. Effects of graded dietary levels of soy protein concentrate supplemented with methionine and phosphate on the immune and antioxidant responses of gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol. 2017, 64, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Kokou, F.; Sarropoulou, E.; Cotou, E.; Rigos, G.; Henry, M.; Alexis, M.; Kentouri, M. Effects of fish meal replacement by a soybean protein on growth, histology, selected immune and oxidative status markers of gilthead sea bream, Sparus aurata. J. World Aquac. Soc. 2015, 46, 115–128. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, J.; Feng, J.; He, J.; Lou, Y.; Zhou, Q. Effects of dietary soy protein concentrate meal on growth, immunity, enzyme activity and protein metabolism in relation to gene expression in large yellow croaker Larimichthys crocea. Aquaculture 2017, 477, 15–22. [Google Scholar] [CrossRef]
- Kader, M.A.; Bulbul, M.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Nguyen, B.T.; Komilus, C.F. Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture 2012, 350–353, 109–116. [Google Scholar] [CrossRef]
- Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Dawood, M.A.O.; el Basuini, M.F.; El-Hais, A.M.; Olivier, A. Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile, Pagrus major. Aquaculture 2018, 490, 228–235. [Google Scholar] [CrossRef]
- Bu, X.; Chen, A.; Lian, X.; Chen, F.; Zhang, Y.; Muhammad, I.; Ge, X.; Yang, Y. An evaluation of replacing fish meal with cottonseed meal in the diet of juvenile Ussuri catfish Pseudobagrus ussuriensis: Growth, antioxidant capacity, nonspecific immunity and resistance to Aeromonas hydrophila. Aquaculture 2017, 479, 829–837. [Google Scholar] [CrossRef]
- Deng, J.; Mai, K.; Chen, L.; Mi, H.; Zhang, L. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus × O. aureus). Fish Shellfish Immunol. 2015, 44, 436–444. [Google Scholar] [CrossRef]
- Sitjà-Bobadilla, A.; Peña-Llopis, S.; Gómez-Requeni, P.; Médale, F.; Kaushik, S.; Pérez-Sánchez, J. Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture 2005, 249, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.S.; Azm, F.R.A.; Wang, X.Y.; Zhu, Y.H.; Yu, H.J.; Yao, J.P.; Luo, Z.; Tan, Q. Effects of replacement of dietary cottonseed meal by distiller’s dried grains with solubles on growth performance, muscle texture, health and expression of muscle-related genes in grass carp (Ctenopharyngodon idellus). Aquac. Nutr. 2021, 27, 1255–1266. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, S.Q.; Liao, Y.L.; Lian, X.Q.; Luo, C.Z.; Zhang, Y.; Yang, C.H.; Cui, C.H.; Yang, J.M.; Yang, Y. Partial fishmeal replacement by mussel meal or meat and bone meal in low-fishmeal diets for juvenile Ussuri catfish (Pseudobagrus ussuriensis): Growth, digestibility, antioxidant capacity and IGF-I gene expression. Aquac. Nutr. 2020, 26, 727–736. [Google Scholar] [CrossRef]
- Henry, M.A.; Gai, F.; Enes, P.; Peréz-Jiménez, A.; Gasco, L. Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2018, 83, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Raji, A.A.; Alaba, P.A.; Yusuf, H.; Abu Bakar, N.H.; Mohd Taufek, N.; Muin, H.; Alias, Z.; Milow, P.; Abdul Razak, S. Fishmeal replacement with Spirulina platensis and Chlorella vulgaris in African catfish (Clarias gariepinus) diet: Effect on antioxidant enzyme activities and haematological parameters. Res. Vet. Sci. 2018, 119, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Imani, A.; Farhangi, M.; Gharaei, A.; Hafezieh, M. Replacement of fishmeal with processed canola meal in diets for juvenile Nile tilapia (Oreochromis niloticus): Growth performance, mucosal innate immunity, hepatic oxidative status, liver and intestine histology. Aquaculture 2020, 518, 734824. [Google Scholar] [CrossRef]
- Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Dawood, M.A.O.; el Basuini, M.F.; Olivier, A.; Zaineldin, A.I. Growth performance, blood health, antioxidant status and immune response in red sea bream (Pagrus major) fed Aspergillus oryzae fermented rapeseed meal (RM-Koji). Fish Shellfish Immunol. 2018, 75, 253–262. [Google Scholar] [CrossRef]
- Liu, X.; Han, B.; Xu, J.; Zhu, J.; Hu, J.; Wan, W.; Miao, S. Replacement of fishmeal with soybean meal affects the growth performance, digestive enzymes, intestinal microbiota and immunity of Carassius auratus gibelio♀ × Cyprinus carpio♂. Aquac. Rep. 2020, 18, 100472. [Google Scholar] [CrossRef]
- Reda, R.M.; Nasr, M.A.F.; Ismail, T.A.; Moustafa, A. Immunological responses and the antioxidant status in African catfish (Clarias gariepinus) following replacement of dietary fish meal with plant protein. Animals 2021, 11, 1223. [Google Scholar] [CrossRef]
- Luo, C.; Wang, Y.; Tao, S.; Liao, Y.; Yang, C.; Cui, C.; Yang, J.; Yang, Y. Effects of replacing fish meal with mussel (Cristaria plicata) meat on growth, digestive ability, antioxidant capacity and hepatic IGF-I gene expression in juvenile Ussuri catfish (Pseudobagrus ussuriensis). Aquac. Res. 2019, 50, 826–835. [Google Scholar] [CrossRef]
- Li, S.; Ji, H.; Zhang, B.; Zhou, J.; Yu, H. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture 2017, 477, 62–70. [Google Scholar] [CrossRef]
- Taufek, N.M.; Aspani, F.; Muin, H.; Raji, A.A.; Razak, S.A.; Alias, Z. The effect of dietary cricket meal (Gryllus bimaculatus) on growth performance, antioxidant enzyme activities, and haematological response of African catfish (Clarias gariepinus). Fish Physiol. Biochem. 2016, 42, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, E.; Ibarz, A.; Firmino, J.P.; Fernández-Alacid, L.; Salomón, R.; Vallejos-Vidal, E.; Ruiz, A.; Polo, J.; Sanahuja, I.; Reyes-López, F.E.; et al. Porcine protein hydrolysates (PEPTEIVA®) promote growth and enhance systemic immunity in gilthead sea bream (Sparus aurata). Animals 2021, 11, 2122. [Google Scholar] [CrossRef]
- Yu, R.; Cao, H.; Huang, Y.; Peng, M.; Kajbaf, K.; Kumar, V.; Tao, Z.; Yang, G.; Wen, C. The effects of partial replacement of fishmeal protein by hydrolysed feather meal protein in the diet with high inclusion of plant protein on growth performance, fillet quality and physiological parameters of Pengze crucian carp (Carassius auratus). Aquac. Res. 2020, 51, 636–647. [Google Scholar] [CrossRef]
- Khosravi, S.; Rahimnejad, S.; Herault, M.; Fournier, V.; Lee, C.-R.; Dio Bui, H.T.; Jeong, J.-B.; Lee, K.-J. Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major. Fish Shellfish Immunol. 2015, 45, 858–868. [Google Scholar] [CrossRef]
- Bui, H.T.D.; Khosravi, S.; Fournier, V.; Herault, M.; Lee, K.-J. Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture 2014, 418–419, 11–16. [Google Scholar] [CrossRef]
- Shi, Y.; Zhong, L.; Ma, X.; Liu, Y.; Tang, T.; Hu, Y. Effect of replacing fishmeal with stickwater hydrolysate on the growth, serum biochemical indexes, immune indexes, intestinal histology and microbiota of rice field eel (Monopterus albus). Aquac. Rep. 2019, 15, 100223. [Google Scholar] [CrossRef]
- Zhao, Z.; Song, C.; Xie, J.; Ge, X.; Liu, B.; Xia, S.; Yang, S.; Wang, Q.; Zhu, S. Effects of fish meal replacement by soybean peptide on growth performance, digestive enzyme activities, and immune responses of yellow catfish Pelteobagrus fulvidraco. Fish. Sci. 2016, 82, 665–673. [Google Scholar] [CrossRef]
- Song, Z.; Li, H.; Wang, J.; Li, P.; Sun, Y.; Zhang, L. Effects of fishmeal replacement with soy protein hydrolysates on growth performance, blood biochemistry, gastrointestinal digestion and muscle composition of juvenile starry flounder (Platichthys stellatus). Aquaculture 2014, 426–427, 96–104. [Google Scholar] [CrossRef]
- Xu, X.; Ji, H.; Yu, H.; Zhou, J. Influence of replacing fish meal with enzymatic hydrolysates of defatted silkworm pupa (Bombyx mori L.) on growth performance, body composition and non-specific immunity of juvenile mirror carp (Cyprinus carpio var. specularis). Aquac. Res. 2018, 49, 1480–1490. [Google Scholar] [CrossRef]
- Choi, D.G.; He, M.; Fang, H.; Wang, X.L.; Li, X.Q.; Leng, X.J. Replacement of fish meal with two fermented soybean meals in diets for rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2020, 26, 37–46. [Google Scholar] [CrossRef]
- Hanson, C.C.; Udechukwu, M.C.; Mohan, A.; Anderson, D.M.; Udenigwe, C.C.; Colombo, S.M.; Collins, S.A. Whey protein hydrolysate as a multi-functional ingredient in diets for Arctic charr: Effect on growth response and hepatic antioxidative status. Anim. Feed Sci. Technol. 2020, 270, 114698. [Google Scholar] [CrossRef]
- Bongiorno, T.; Foglio, L.; Proietti, L.; Vasconi, M.; Moretti, V.M.; Lopez, A.; Carminati, D.; Galafat, A.; Vizcaíno, A.J.; Fernández, F.G.A.; et al. Hydrolyzed microalgae from biorefinery as a potential functional ingredient in Siberian sturgeon (A. baerii Brandt) aquafeed. Algal Res. 2022, 62, 102592. [Google Scholar] [CrossRef]
- Yang, X.; He, Y.; Chi, S.; Tan, B.; Lin, S.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S. Supplementation with Saccharomyces cerevisiae hydrolysate in a complex plant protein, low-fishmeal diet improves intestinal morphology, immune function and Vibrio harveyi disease resistance in Epinephelus coioides. Aquaculture 2020, 529, 735655. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, S.; Feng, L.; Liu, Y.; Jiang, W.; Wu, P.; Wang, Y.; Zhao, Y.; Zhou, X. Lysine and methionine supplementation ameliorates high inclusion of soybean meal inducing intestinal oxidative injury and digestive and antioxidant capacity decrease of yellow catfish. Fish Physiol. Biochem. 2018, 44, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Séité, S.; Mourier, A.; Camougrand, N.; Salin, B.; Figueiredo-Silva, A.C.; Fontagné-Dicharry, S.; Panserat, S.; Seiliez, I. Dietary methionine deficiency affects oxidative status, mitochondrial integrity and mitophagy in the liver of rainbow trout (Oncorhynchus mykiss). Sci. Rep. 2018, 8, 10151. [Google Scholar] [CrossRef] [PubMed]
- Mokrani, A.; Ren, M.; Liang, H.; Yang, Q.; Ji, K.; Kasiya, H.C.; Ge, X. Effect of the total replacement of fishmeal with plant proteins and supplemental essential amino acids in the extruded diet on antioxidants genes, enzyme activities, and immune response in juvenile blunt snout bream. Aquac. Int. 2020, 28, 555–568. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish and Shrimp; National Research Council of the National Academies: Washington, DC, USA, 2011. [Google Scholar]
- Martins, N.; Diógenes, A.F.; Magalhães, R.; Matas, I.; Oliva-Teles, A.; Peres, H. Dietary taurine supplementation affects lipid metabolism and improves the oxidative status of European seabass (Dicentrarchus labrax) juveniles. Aquaculture 2021, 531, 735820. [Google Scholar] [CrossRef]
Protein Ingredient | Animal Model and Size | Inclusion Level (%) | Trial Duration | Biological Effects | References | |
---|---|---|---|---|---|---|
Microbiota | Relevant Performance, Physiological, and Feed Utilization Output | |||||
Insects’ Meal | ||||||
Black soldier fly (Hermetia illucens) | Atlantic salmon (Salmo salar) 49 g | 60 | 8 weeks | ↑ Diversity in mucosa-associated community, Bacillaceae family, Bacillus, Actinomyces ↓ Digesta-associated community | ↔ SGR | [115] |
Black soldier fly (Hermetia illucens) | Atlantic salmon (Salmo salar) 1400 g | 15 | 16 weeks | ↑ Diversity and richness, Brevinema andersonii, Spirichaetaceae | ↔ SGR | [115] |
Black soldier fly (Hermetia illucens) | Barramundi (Lates calcarifer) 3 g | 18 | 7 weeks | ↑ Diversity (Shannon and Simpson index), Psychrobacter ↓ Vibrio | ↔ FBW, SGR | [102] |
Black soldier fly (Hermetia illucens) | European seabass (Dicentrarchus labrax) 19 g | 15 | 93 days | ↔ Diversity and richness ↓ Proteobacteria and Bacteroidetes, Weeksellaceae, and Prevotellaceae ↑ Paracoccus | ↑ FBW ↓ FCR | [87] |
Black soldier fly (Hermetia illucens) | European seabass (Dicentrarchus labrax) 6 g | 30 | 12 weeks | ↔ Diversity and richness ↑ Anaerococcus, Cutibacterium, Pseudomonas, and Firmicutes:Bacteroidetes ratio | ↔ FBW, FCR, K | [124] |
Black soldier fly (Hermetia illucens) | Gilthead seabream (Sparus aurata) 30 g | 30 | 12 weeks | ↔ Diversity and richness ↑ Staphylococcus, Hafnia, and Aeromonas | ↔ FBW, FCR, K | [124] |
Black soldier fly (Hermetia illucens) | Siberian sturgeon (Acipenser baerii) 640 g | 15 | 60 days | ↑ Bacillus, Lactobacillus, and Enterococcus Overall positive and strong modulation | ↔ FBW, SGR, FCR ↓ Mucosa thickness | [116] |
Black soldier fly (Hermetia illucens) | Meagre (Argyrosomus regius) 18 g | 10, 20, 30 | 9 weeks | ↔ Diversity and community composition | ↑ Gut histomorphology alterations | [114] |
Black soldier fly (Hermetia illucens) | Rainbow trout (Oncorhynchus mykiss) 178 g | 20, 40 | 78 days | ↑ Diversity, structure, and composition (mainly in IL20) ↑ Digesta associated LAB | ↔ WG, FCR | [122] |
Black soldier fly (Hermetia illucens) | Rainbow trout (Oncorhynchus mykiss) 200 g | 30 | 5 weeks | ↑ Diversity (Shannon index), richness (Chao index), LAB, Corynebacterium, Bacillaceae ↓ Proteobacteria:Firmicutes ratio | ↔ WG, FI | [117] |
Black soldier fly (Hermetia illucens) | Rainbow trout (Oncorhynchus mykiss) 53 g | 20 | 71 days | ↑ LAB (mainly Lactobacillus and Enterococcus) | ↔ SGR, FCR, villus height, mucosa thickness | [121] |
Black soldier fly (Hermetia illucens) | Rainbow trout (Oncorhynchus mykiss) 66 g | 10, 20, 30 | 12 weeks | ↔ Richness ↑ Diversity (Shannon and Simpson) in IL20, Mycoplasma ↓ Aeromonas and Citrobacter | ↔ FBW, SGR | [119] |
Black soldier fly (Hermetia illucens) | Rainbow trout (Oncorhynchus mykiss) 66 g | 10, 20, 30 | 12 weeks | ↑ Diversity (Shannon and Simpson), richness (Chao1), Firmicutes and Actinobacteria, LAB (mainly Leuconostocaceae and Lactobacillaceae), and Actinobacteria (Actinomyces, Corynebacterium) | ↔ FBW, SGR, FCR | [118] |
Black soldier fly (Hermetia illucens) | Rainbow trout (Oncorhynchus mykiss) 54 g | 8, 23, 45 in PP-based diet | 12 weeks | ↔ Firmicutes:Proteobacteria ratio ↑ Diversity and richness than PP diet (restored) in IL23 and IL45, Actinomyces, Bacillus, Dorea, Enterococcus, Mycoplasma | ↑ Growth performance, mainly in IL8 combined with poultry meal ↔ Gut barrier integrity | [123] |
Black soldier fly (Hermetia illucens) | Rainbow trout (Oncorhynchus mykiss) 100 g | 15 | 131 days | ↑ Richness, Firmicutes (mainly Bacillus), Lactobacillus, and Bacillus ↓ Proteobacteria, Aeromonas genus | ↔ FBW, SGR | [120] |
Housefly (Musca domestica) | European seabass (Dicentrarchus labrax) 6 g | 30 | 12 weeks | ↔ Diversity and richness ↑ Anaerococcus, Cutibacterium, and Pseudomonas | ↔ FBW, FCR, K | [124] |
Housefly (Musca domestica) | Gilthead seabream (Sparus aurata) 30 g | 30 | 12 weeks | ↔ Diversity ↓ Richness ↑ Firmicutes:Bacteroidetes ratio | ↔ FBW, FCR, K | [124] |
Indian house cricket (Gryllodes sigillatus) | Rainbow trout (Oncorhynchus mykiss) 53 g | 20 | 71 days | ↑ LAB (mainly Lactobacillus and Enterococcus) | ↑ FCR ↓ SGR, villus height, mucosa thickness | [121] |
Yellow mealworm (Tenebrio molitor) | European seabass (Dicentrarchus labrax) 5 g | 50 | 70 days | ↔ Diversity | ↔ FBW | [113] |
Yellow mealworm (Tenebrio molitor) | European seabass (Dicentrarchus labrax) 6 g | 30 | 12 weeks | ↔ Diversity and richness ↑ Anaerococcus, Cutibacterium, Pseudomonas, and Firmicutes:Bacteroidetes ratio | ↔ FBW, FCR, K | [124] |
Yellow mealworm (Tenebrio molitor) | Gilthead seabream (Sparus aurata) 105 g | 50 | 163 days | ↑ Proteobacteria:Firmicutes ratio ↓ Firmicutes:Bacteroidetes ratio | ↔ FBW | [113] |
Yellow mealworm (Tenebrio molitor) | Gilthead seabream (Sparus aurata) 30 g | 30 | 12 weeks | ↔ Diversity and richness ↑ Staphylococcus, Hafnia, and Aeromonas | ↔ FBW, FCR ↑ K | [124] |
Yellow mealworm (Tenebrio molitor) | Rainbow trout (Oncorhynchus mykiss) 115 g | 50 | 90 days | ↑ Diversity (Simpson index) | ↔ FBW | [113] |
Yellow mealworm (Tenebrio molitor) | Rainbow trout (Oncorhynchus mykiss) 53 g | 20 | 71 days | ↑ LAB (mainly Lactobacillus and Enterococcus) | ↔ SGR, FCR, mucosa thickness ↓ Villus height | [121] |
Yellow mealworm (Tenebrio molitor) | Rainbow trout (Oncorhynchus mykiss) 80 g | 20 (full replacement) | 22 weeks | ↔ Microbial structure | ↔ WG | [125] |
Yellow mealworm (Tenebrio molitor) | Sea trout (Salmo trutta) 5 g | 10 | 8 weeks | ↓ Lactobacillus, Carnobacterium | ↔ FBW, SGR, FCR | [112] |
Yellow mealworm (Tenebrio molitor) | Siberian sturgeon (Acipenser baerii) 640 g | 15 | 60 days | ↑ Probiotic bacteria (not Lactobacillus) | ↔ FBW, SGR, FCR ↑ Thickness of muscular layer | [116] |
Superworm (Zophobas morio) | Sea trout (Salmo trutta) 5 g | 10 | 8 weeks | ↓ Aeromonas, Enterococcus, Lactobacillus, and Carnobacterium | ↔ FBW, SGR, FCR | [112] |
Turkestan cockroach (Blatta lateralis) | Rainbow trout (Oncorhynchus mykiss) 53 g | 20 | 71 days | ↑ LAB (mainly Lactobacillus and Enterococcus), Clostridia coccoides | ↔ SGR, FCR ↑ Villus height, mucosa thickness | [121] |
Source | Animal Model & Size | Inclusion Level (%) | Trial Duration | Biological Effects | References | |
---|---|---|---|---|---|---|
Performance and Feed Utilization | Antioxidant Status | |||||
Feather meal | Pengze crucian carp (Carassius auratus var. Pengze) 13 g | 2, 4, 6, 8 | 10 weeks | ↓ FBW, SGR in IL8; FE in IL4 ↑ HSI in IL8 ↔ FBW, SGR, HSI in IL2, 4 and 6; FE in IL2, 6 and 8; SR in all | ↓ CAT in IL2 ↑ GSH, LPO in IL4, 6 and 8; CAT in IL8; SOD, GPX in all ↔ LPO, GSH in IL2; CAT in IL4 and 6 | [222] |
Porcine plasma | Gilthead seabream (Sparus aurata) 182 g | 5 | 13 weeks | ↑ FBW, SGR, FI ↔ FCR, K, SR | ↔ TAC, sod, cat | [221] |
Porcine blood | Gilthead seabream (Sparus aurata) 1 g | 3, 6 | 9 weeks | ↑ FBW, SGR, K in IL3 ↔ FBW, SGR, K in IL6; SR in all | ↓ CAT, GR, GST in IL3 ↔ CAT, GR, GST in IL6; LPO, GPX in all | [137] |
Krill | Olive flounder (Paralichthys olivaceus) 15 g | 3 | 11 weeks | ↓ FCR ↑ FBW, SGR, FI, PER ↔ SR | ↔ SOD, GPX | [59] |
Krill | Red seabream (Pagrus major) 29 g | 4 | 12 weeks | ↓ FCR ↑ FBW, SGR, PER ↔ FI, SR | ↑ SOD | [224] |
Krill | Red seabream (Pagrus major) 5 g | 3 | 13 weeks | ↓ FCR ↑ FBW, SGR, PER ↔ FI, HSI, VSI, K, SR | ↑ SOD ↔ GPX | [223] |
Shrimp | Olive flounder (Paralichthys olivaceus) 15 g | 3 | 11 weeks | ↑ FBW, SGR, FI ↔ FCR, PER, SR | ↑ SOD ↔ GPX | [59] |
Shrimp | Red seabream (Pagrus major) 29 g | 5 | 12 weeks | ↓ FCR ↑ FBW, SGR, PER ↔ FI, SR | ↔ SOD | [224] |
Shrimp | Red seabream (Pagrus major) 5 g | 3 | 13 weeks | ↓ FCR ↑ FBW, SGR, PER ↔ FI, HSI, VSI, K, SR | ↑ SDO ↔ GPX | [223] |
Silkworm pupa | Mirror carp (Cyprinus carpio var. specularis) 15 g | 3, 5, 8, 10 | 8 weeks | ↓ FBW, SGR in IL8 and 10 ↑ FCR in IL8 and 10 ↔ FBW, SGR, FCR in IL3 and 5; PER, VSI, HSI, K, SR in all | ↑ SOD in IL3 and 5; CAT in IL3 ↔ SOD, LPO in IL8 and 10; CAT in IL5, 8 and 10 | [228] |
Tilapia | Olive flounder (Paralichthys olivaceus) 15 g | 3 | 11 weeks | ↓ FCR ↑ FBW, SGR, FI ↔ PER, SR | ↔ SOD, GPX | [59] |
Tilapia | Red seabream (Pagrus major) 29 g | 4 | 12 weeks | ↔ FBW, SGR, FI, FCR, PER, SR | ↔ SOD | [224] |
Tilapia | Red seabream (Pagrus major) 5 g | 3 | 13 weeks | ↓ FCR ↑ SGR, PER ↔ FBW, FI, HSI, VSI, K, SR | ↑ SOD ↔ GPX | [223] |
Stickwater | Rice field eel (Monopterus albus) 25 g | 5, 10, 15 | 8 weeks | ↓ FCR, K in IL10 ↑ FBW in IL10 and 15 ↔ FBW in IL5; K in IL5 and 15; SR, VSI, HSI in all | ↔ SOD, LPO in all | [225] |
Soy | Yellow catfish (Pelteobagrus fulvidraco) 22 g | 6, 11, 16 | 8 weeks | ↓ FCR in IL16; HSI in IL6 and 11 ↑ FBW, SGR in IL16 ↔ FBW, SGR, FCR in IL6 and 11; HSI in IL16; VSI, SR in all | ↔ LPO in all | [226] |
Soy | Starry flounder (Platichthys stellatus) 6 g | 14, 23, 38, 50, 62, 73 | 9 weeks | ↓ SGR in IL73; FCR in IL14, 23 and 38; FI, PER in IL62 and 73 ↑ SGR, FI, PER in IL14, 23 and 38; FCR in IL62 and 73 ↔ FBW, SGR in IL50 and 62; FCR, FI, PER in IL50 | ↓ LPO in IL23, 38, 50, 62, and 73 ↑ TAC in IL14, 23, 38, and 50; SOD in all ↔ LPO in IL14; TAC in IL62 and 73 | [227] |
Soy, low and high hydrolysis | Rainbow trout (Oncorhynchus mykiss) 18 g | 7, 14, 21 | 8 weeks | ↓ FBW and WG in IL21 ↑ FCR in IL21 ↔ FBW, WG in IL7 and IL14; FCR, FI, K, HSI, VSI in all | ↑ SOD in IL14 and 21 ↔ SOD in IL7 | [229] |
Whey | Arctic charr (Salvelinus alpinus) 34 g | 0.1, 0.5, 1.0, 2.6, 5.1 | 12 weeks | ↔ FBW, SGR, FI, FCR, PER, HSI, VSI in all | ↔ TAC, GSH, LPO in all | [230] |
Nannochloropsis gaditana | Siberian sturgeon (Acipenser baerii) 13 g | 10 | 6 weeks | ↔ FBW, SGR, FI, FCR, K, SR | ↔ SOD, CAT | [231] |
Scenedesmus almeriensis | Siberian sturgeon (Acipenser baerii) 13 g | 10 | 6 weeks | ↓ FBW ↔ SGR, FI, FCR, K, SR | ↔ SOD, CAT | [231] |
Saccharomyces cerevisiae | Orange-spotted grouper (Epinephelus coioides) 10 g | 1, 2, 3, 5 | 8 weeks | ↔ SGR, FCR, FI, PER, SR in all | ↓ SOD in IL3 and 5 ↔ SOD in IL1 and 2; CAT in all | [232] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aragão, C.; Gonçalves, A.T.; Costas, B.; Azeredo, R.; Xavier, M.J.; Engrola, S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022, 12, 1211. https://doi.org/10.3390/ani12091211
Aragão C, Gonçalves AT, Costas B, Azeredo R, Xavier MJ, Engrola S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals. 2022; 12(9):1211. https://doi.org/10.3390/ani12091211
Chicago/Turabian StyleAragão, Cláudia, Ana Teresa Gonçalves, Benjamín Costas, Rita Azeredo, Maria João Xavier, and Sofia Engrola. 2022. "Alternative Proteins for Fish Diets: Implications beyond Growth" Animals 12, no. 9: 1211. https://doi.org/10.3390/ani12091211