Immune Response in Young Thoroughbred Racehorses under Training
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sample Collection
2.3. Haematological Parameters
2.4. RT-qPCR Analyses
2.5. Statistical Analysis
2.6. Ethical Animal Research
3. Results
3.1. Haematological Parameters
3.2. RT-qPCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miglio, A.; Morelli, C.; Maresca, C.; Felici, A.; Di Giambattista, A.; Antognoni, M.T. Hematologic reference intervals for the Italian Heavy Draft horse. Comp. Clin. Pathol. 2019, 28, 833–840. [Google Scholar] [CrossRef]
- Miglio, A.; Morelli, C.; Maresca, C.; Felici, A.; Gianbattista, A.D.; Antognoni, M.T. Serum protein concentrations and protein fractions in clinically healthy Italian Heavy Draft Horses using agarose gel electrophoresis. Vet. Clin. Pathol. 2019, 48, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Miglio, A.; Morelli, C.; Maresca, C.; Felici, A.; Moscati, L.; Antognoni, M.T. Biochemical reference intervals for the Italian Heavy Draft horse. Comp. Clin. Pathol. 2019, 28, 841–851. [Google Scholar] [CrossRef]
- The Innate Immune Response to Noninfectious Stressors—1st Edition. Available online: https://www.elsevier.com/books/the-innate-immune-response-to-noninfectious-stressors/amadori/978-0-12-801968-9 (accessed on 8 September 2020).
- Glencross, D.A.; Ho, T.-R.; Camiña, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Gabai, G.; Amadori, M.; Knight, C.H.; Werling, D. The immune system is part of a whole-organism regulatory network. Res. Vet. Sci. 2018, 116, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Staley, M.; Conners, M.G.; Hall, K.; Miller, L.J. Linking stress and immunity: Immunoglobulin A as a non-invasive physiological biomarker in animal welfare studies. Horm. Behav. 2018, 102, 55–68. [Google Scholar] [CrossRef]
- Marcato, F.; van den Brand, H.; Kemp, B.; van Reenen, K. Evaluating Potential Biomarkers of Health and Performance in Veal Calves. Front. Vet. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Razzuoli, E.; Villa, R.; Sossi, E.; Amadori, M. Characterization of the Interferon-α Response of Pigs to the Weaning Stress. J. Interferon Cytokine Res. 2011, 31, 237–247. [Google Scholar] [CrossRef]
- Mackenzie, A.M.; Drennan, M.; Rowan, T.G.; Dixon, J.B.; Carter, S.D. Effect of transportation and weaning on humoral immune responses of calves. Research Vet. Sci. 1997, 63, 227–230. [Google Scholar] [CrossRef]
- Magnani, D.; Cafazzo, S.; Calà, P.; Razzuoli, E.; Amadori, M.; Bernardini, D.; Gerardi, G.; Costa, L.N. Effect of long transport and environmental conditions on behaviour and blood parameters of postweaned piglets with different reactivity to backtest. Livest. Sci. 2014, 162, 201–208. [Google Scholar] [CrossRef]
- Cafazzo, S.; Magnani, D.; Calà, P.; Razzuoli, E.; Gerardi, G.; Bernardini, D.; Amadori, M.; Costa, L.N. Effect of short road journeys on behaviour and some blood variables related to welfare in young bulls. Appl. Anim. Behav. Sci. 2012, 139, 26–34. [Google Scholar] [CrossRef]
- Miglio, A.; Antognoni, M.T.; Maresca, C.; Moncada, C.; Riondato, F.; Scoccia, E.; Mangili, V. Serum protein concentration and protein fractions in clinically healthy Lacaune and Sarda sheep using agarose gel electrophoresis. Vet. Clin. Pathol. 2015, 44, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Razzuoli, E.; Mignone, G.; Lazzara, F.; Vencia, W.; Ferraris, M.; Masiello, L.; Vivaldi, B.; Ferrari, A.; Bozzetta, E.; Amadori, M. Impact of cadmium exposure on swine enterocytes. Toxicol. Lett. 2018, 287, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, K.; Mecocci, S.; Gioiosa, S.; Giontella, A.; Silvestrelli, M.; Cherchi, R.; Valentini, A.; Chillemi, G.; Capomaccio, S. Gallop Racing Shifts Mature mRNA towards Introns: Does Exercise-Induced Stress Enhance Genome Plasticity? Genes (Basel) 2020, 11, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capomaccio, S.; Vitulo, N.; Verini-Supplizi, A.; Barcaccia, G.; Albiero, A.; D’Angelo, M.; Campagna, D.; Valle, G.; Felicetti, M.; Silvestrelli, M.; et al. RNA Sequencing of the Exercise Transcriptome in Equine Athletes. PLoS ONE 2013, 8, e83504. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, K.; Felicetti, M.; Capomaccio, S.; Nocelli, C.; Silvestrelli, M.; Verini-Supplizi, A. Effect of training status on immune defence related gene expression in Thoroughbred: Are genes ready for the sprint? Vet. J. 2013, 195, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Miglio, A.; Moscati, L.; Scoccia, E.; Maresca, C.; Antognoni, M.T.; Felici, A. Reference values for serum amyloid A, haptoglobin, lysozyme, zinc and iron in healthy lactating Lacaune sheep. Acta. Vet. Scand 2018, 60. [Google Scholar] [CrossRef] [Green Version]
- Razzuoli, E.; Olzi, E.; Calà, P.; Cafazzo, S.; Magnani, D.; Vitali, A.; Lacetera, N.; Archetti, L.; Lazzara, F.; Ferrari, A.; et al. Innate immune responses of young bulls to a novel environment. Vet. Immunol. Immunopathol. 2016, 172, 9–13. [Google Scholar] [CrossRef]
- Marlin, D.J.; Fenn, K.; Smith, N.; Deaton, C.D.; Roberts, C.A.; Harris, P.A.; Dunster, C.; Kelly, F.J. Changes in circulatory antioxidant status in horses during prolonged exercise. J. Nutr. 2002, 132, 1622S–1627S. [Google Scholar] [CrossRef] [Green Version]
- Miglio, A.; Cappelli, K.; Capomaccio, S.; Mecocci, S.; Silvestrelli, M.; Antognoni, M.T. Metabolic and Biomolecular Changes Induced by Incremental Long-Term Training in Young Thoroughbred Racehorses during First Workout Season. Animals (Basel) 2020, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Burlikowska, K.; Boguslawska-Tryk, M.; Szymeczko, R.; Piotrowska, A. Haematological and biochemical blood parameters in horses used for sport and recreation. J. Cent. Eur. Agric. 2015, 16, 370–382. [Google Scholar] [CrossRef] [Green Version]
- Hines, M.T.; Schott II, H.C.; Bayly, W.M.; Leroux, A.J. Exercise and Immunity: A Review with Emphasis on the Horse. J. Vet. Intern. Med. 1996, 10, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Rezazadeh, F. Comparison of Some Hematological Parameters Between Horses in an Endurance Competition. Anim. Vet. Sci. 2016, 4, 97. [Google Scholar] [CrossRef]
- Keadle, T.L. The Effects of Exercise Stress on Equine Immune Function; Louisiana State University: Baton Rouge, LA, USA, 1992; p. 187. [Google Scholar]
- Rivero, J.L.; Serrano, A.L.; Henckel, P.; Agüera, E. Muscle fiber type composition and fiber size in successfully and unsuccessfully endurance-raced horses. J. Appl. Physiol. 1993, 75, 1758–1766. [Google Scholar] [CrossRef]
- Rivero, J.L.; Serrano, A.L.; Barrey, E.; Valette, J.P.; Jouglin, M. Analysis of myosin heavy chains at the protein level in horse skeletal muscle. J. Muscle Res. Cell. Motil. 1999, 20, 211–221. [Google Scholar] [CrossRef]
- D’Angelis, F.H.F.; Ferraz, G.C.; Boleli, I.C.; Lacerda-Neto, J.C.; Queiroz-Neto, A. Aerobic training, but not creatine supplementation, alters the gluteus medius muscle. J. Anim. Sci. 2005, 83, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Foreman, J.H.; Bayly, W.M.; Grant, B.D.; Gollnick, P.D. Standardized exercise test and daily heart rate responses of thoroughbreds undergoing conventional race training and detraining. Am. J. Vet. Res. 1990, 51, 914–920. [Google Scholar]
- Foreman, J.H.; Bayly, W.M.; Allen, J.R.; Matoba, H.; Grant, B.D.; Gollnick, P.D. Muscle responses of thoroughbreds to conventional race training and detraining. Am. J. Vet. Res. 1990, 51, 909–913. [Google Scholar]
- Lakier Smith, L. Overtraining, excessive exercise, and altered immunity: Is this a T helper-1 versus T helper-2 lymphocyte response? Sports Med. 2003, 33, 347–364. [Google Scholar] [CrossRef]
- Purvis, D.; Gonsalves, S.; Deuster, P.A. Physiological and Psychological Fatigue in Extreme Conditions: Overtraining and Elite Athletes. PM&R 2010, 2, 442–450. [Google Scholar] [CrossRef]
- de Graaf-Roelfsema, E.; Keizer, H.A.; van Breda, E.; Wijnberg, I.D.; van der Kolk, J.H. Hormonal responses to acute exercise, training and overtraining. A review with emphasis on the horse. Vet. Q. 2007, 29, 82–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeever, K.H. Overtraining Syndrome in Standardbred Horses: New Insights into the Role of Red Blood Cell Hypervolaemia. Vet. J. 2003, 165, 190–192. [Google Scholar] [CrossRef]
- Capomaccio, S.; Cappelli, K.; Spinsanti, G.; Mencarelli, M.; Muscettola, M.; Felicetti, M.; Supplizi, A.; Bonifazi, M. Athletic humans and horses: Comparative analysis of interleukin-6 (IL-6) and IL-6 receptor (IL-6R) expression in peripheral blood mononuclear cells in trained and untrained subjects at rest. BMC Physiol. 2011, 11, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappelli, K.; Felicetti, M.; Capomaccio, S.; Spinsanti, G.; Silvestrelli, M.; Verini Supplizi, A. Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization. BMC Mol. Biol. 2008, 9, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGowan, C. Clinical Pathology in the Racing Horse: The Role of Clinical Pathology in Assessing Fitness and Performance in the Racehorse. Vet. Clin. North Am. Equine Pract. 2008, 24, 405–421. [Google Scholar] [CrossRef]
- Piccione, G.; Casella, S.; Giannetto, C.; Messina, V.; Monteverde, V.; Caola, G.; Guttadauro, S. Haematological and haematochemical responses to training and competition in standardbred horses. Comp. Clin. Pathol. 2010, 19, 95–101. [Google Scholar] [CrossRef]
- Hassan, H.; Aly, M.; ELseady, Y.; Nayel, M.; Elsify, A.; Salama, A.; Hassan, M.; Elbarody, E.; Kamar, A. The Effect of Race in the Clinical, Hematological and Biochemical Biomarkers in Thoroughbred Horses. Alex. J. Vet. Sci. 2015. [Google Scholar] [CrossRef] [Green Version]
- Piccione, G.; Casella, S.; Giannetto, C.; Monteverde, V.; Ferrantelli, V. Exercise-induced Modifications on Haematochemical and Electrophoretic Parameters During 1600 and 2000 Meters Trot Races in Standardbred Horses. J. Appl. Anim. Res. 2009, 35, 131–135. [Google Scholar] [CrossRef]
- Snow, D.H.; Mackenzie, G. Effect of Training on some Metabolic Changes associated with Submaximal Endurance Exercise in the Horse. Equine Vet. J. 1977, 9, 226–230. [Google Scholar] [CrossRef]
- Petersen, A.M.W.; Pedersen, B.K. The role of IL-6 in mediating the anti-inflammatory effects of exercise. J. Physiol. Pharmacol. 2006, 57 Suppl 10, 43–51. [Google Scholar]
- Büttner, P.; Mosig, S.; Lechtermann, A.; Funke, H.; Mooren, F.C. Exercise affects the gene expression profiles of human white blood cells. J. Appl. Physiol. 2007, 102, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Gjevestad, G.O.; Holven, K.B.; Ulven, S.M. Effects of Exercise on Gene Expression of Inflammatory Markers in Human Peripheral Blood Cells: A Systematic Review. Curr. Cardiovasc. Risk Rep. 2015, 9, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horohov, D.W.; Sinatra, S.T.; Chopra, R.K.; Jankowitz, S.; Betancourt, A.; Bloomer, R.J. The Effect of Exercise and Nutritional Supplementation on Proinflammatory Cytokine Expression in Young Racehorses During Training. J. Equine Vet. Sci. 2012, 32, 805–815. [Google Scholar] [CrossRef]
- Vitali, A.; Segnalini, M.; Bertocchi, L.; Bernabucci, U.; Nardone, A.; Lacetera, N. Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. J. Dairy Sci. 2009, 92, 3781–3790. [Google Scholar] [CrossRef] [Green Version]
- Miglio, A.; Gavazza, A.; Siepi, D.; Bagaglia, F.; Misia, A.; Antognoni, M.T. Hematological and Biochemical Reference Intervals for 5 Adult Hunting Dog Breeds Using a Blood Donor Database. Animals 2020, 10, 1212. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002. [Google Scholar] [CrossRef] [Green Version]
- Crociati, M.; Capomaccio, S.; Mandara, M.T.; Stradaioli, G.; Sylla, L.; Monaci, M.; Cappelli, K. Different expression of Defensin-B gene in the endometrium of mares of different age during the breeding season. BMC Vet. Res. 2019, 15, 465. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-[Delta][Delta]CT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Rubin, D.C.; Shaker, A.; Levin, M.S. Chronic intestinal inflammation: Inflammatory bowel disease and colitis-associated colon cancer. Frontiers Immunol. 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- McGowan, C.M.; Whitworth, D.J. Overtraining syndrome in horses. Comp. Exerc. Physiol. 2008, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K. Effects of exercise on lymphocytes and cytokines. Br. J. Sports Med. 2000, 34, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An Introduction to Veterinary Immunology. Available online: https://www.cabdirect.org/cabdirect/abstract/19830485324 (accessed on 8 September 2020).
- Back, H.; Weld, J.; Walsh, C.; Cullinane, A. Equine Rhinitis A Virus Infection in Thoroughbred Racehorses—A Putative Role in Poor Performance? Viruses 2019, 11, 963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couëtil, L.L.; Cardwell, J.M.; Gerber, V.; Lavoie, J.-P.; Léguillette, R.; Richard, E.A. Inflammatory Airway Disease of Horses-Revised Consensus Statement. J. Vet. Intern. Med. 2016, 30, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Krumrych, W.; Gołda, R.; Gołyński, M.; Markiewicz, H.; Buzała, M. Effect of physical exercise on cortisol concentration and neutrophil oxygen metabolism in peripheral blood of horses. Ann. Anim. Sci. 2018, 18, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Lambert, J.L.; Fernandez, N.J.; Roy, M.-F. Association of Presence of Band Cells and Toxic Neutrophils with Systemic Inflammatory Response Syndrome and Outcome in Horses with Acute Disease. J. Vet. Intern. Med. 2016, 30, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Mare, T.; Treacher, D.; Shankar-Hari, M.; Beale, R.; Lewis, S.; Chambers, D.; Brown, K. The diagnostic and prognostic significance of monitoring blood levels of immature neutrophils in patients with systemic inflammation. Crit. Care 2015, 19, 57. [Google Scholar] [CrossRef] [Green Version]
- Ferlazzo, A.; Cravana, C.; Fazio, E.; Medica, P. The different hormonal system during exercise stress coping in horses. Vet. World 2020, 13, 847–859. [Google Scholar] [CrossRef]
- Weber, P.S.D.; Toelboell, T.; Chang, L.-C.; Tirrell, J.D.; Saama, P.M.; Smith, G.W.; Burton, J.L. Mechanisms of glucocorticoid-induced down-regulation of neutrophil L-selectin in cattle: Evidence for effects at the gene-expression level and primarily on blood neutrophils. J. Leukoc. Biol. 2004, 75, 815–827. [Google Scholar] [CrossRef] [Green Version]
- Mastorakos, G.; Pavlatou, M.; Diamanti-Kandarakis, E.; Chrousos, G.P. Exercise and the stress system. Hormones (Athens) 2005, 4, 73–89. [Google Scholar]
- Mairbäurl, H. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Front Physiol. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liburt, N.R.; Adams, A.A.; Betancourt, A.; Horohov, D.W.; McKEEVER, K.H. Exercise-induced increases in inflammatory cytokines in muscle and blood of horses: Muscle cytokine response in horses. Equine Vet. J. 2010, 42, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Baggiolini, M.; Clark-Lewis, I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett. 1992, 307, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Hodi, F.S.; Soiffer, R.J. Interleukins. In Encyclopedia of Cancer (Second Edition); Bertino, J.R., Ed.; Academic Press: New York, NY, USA, 2002. [Google Scholar]
- Liao, W.; Lin, J.-X.; Leonard, W.J. IL-2 Family Cytokines: New Insights into the Complex Roles of IL-2 as a Broad Regulator of T helper Cell Differentiation. Curr. Opin. Immunol. 2011, 23, 598–604. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Tang, Y.; Hong, L.; Xu, M.; Pan, S.; Zhen, K.; Tang, R.; Zhai, X.; Shi, Z.; Wang, H. Interleukin 2 regulates the activation of human basophils. Cytokine 2020, 127, 154934. [Google Scholar] [CrossRef]
- French, S.W.; Mendoza, A.S.; Afifiyan, N.; Tillman, B.; Vitocruz, E.; French, B.A. The role of the IL-8 signaling pathway in the infiltration of granulocytes into the livers of patients with alcoholic hepatitis. Exp. Mol. Pathol. 2017, 103, 137–140. [Google Scholar] [CrossRef]
- Spencer, L.A.; Weller, P.F. Eosinophils and Th2 immunity: Contemporary insights. Immunol. Cell Biol. 2010, 88, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Takatsu, K.; Nakajima, H. IL-5 and eosinophilia. Curr. Opin. Immunol. 2008, 20, 288–294. [Google Scholar] [CrossRef]
- Choi, P.; Reiser, H. IL-4: Role in disease and regulation of production. Clin. Exp. Immunol. 1998, 113, 317–319. [Google Scholar] [CrossRef]
- Kubiczkova, L.; Sedlarikova, L.; Hajek, R.; Sevcikova, S. TGF-β—An excellent servant but a bad master. J. Transl. Med. 2012, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Peli, A.; Scagliarini, L.; Famigli Bergamini, P.; Prosperi, A.; Bernardini, D.; Pietra, M. Effetto dello stress da caldo sull’immunità del bovino da carne. Large Anim. Rev. 2013, 19, 215–218. (In Italian) [Google Scholar]
- Khabar, K.S.A.; Young, H.A. Post-transcriptional control of the interferon system. Biochimie 2007, 89, 761–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
April T0 | May T30 | July T90 |
---|---|---|
15 min Walk | 15 min Walk | 15 min Walk |
10 min Trot | 10 min Trot | 10 min Trot |
6 min Canter | 6 min Canter | 6 min Canter |
Tuesday: 1 min Gallop | Tuesday: 2 min Gallop | Tuesday: 4 min Gallop |
Period | T-max °C | T-min °C | UR-max % | UR-min % | THI-max | THI-min |
---|---|---|---|---|---|---|
T0 (April 2018) | 24.7 ± 3.7 | 6.0 ± 4.9 | 97 ± 0.1 | 37 ± 0.1 | 76.2 ± 6.0 | 48.1 ± 6.2 |
T30 (May 2018) | 30.2 ± 7.3 | 10.7 ± 4.4 | 95 ± 0.1 | 44 ± 0.1 | 85.6 ± 12.1 | 53.3 ± 5.9 |
T90 (July 2018) | 38.2 ± 3.7 | 19.9 ± 1.8 | 83 ± 0.1 | 29 ± 0.1 | 99.1 ± 5.3 | 64.0 ± 1.8 |
Gene | Primer Forward | Primer Reverse | Amplicon Length | Accession |
---|---|---|---|---|
TGFB1 | CGGAATGGCTGTCCTTTGATG | CCCACGCGGAGTGTGTTAT | 127 | NM_001081849.1 |
IL-1B | TGATGCAGCTGTGCATTCAGT | GCACAAAGCTCATGCAGAACA | 146 | NM_001082526.1 |
TNFA | AGCCTCTTCTCCTTCCTCCTT | CAGAGGGTTGATTGACTGGAA | 123 | NM_001081819.2 |
IL-8 | CTGGCTGTGGCTCTCTTG | CAGTTTGGGATTGAAAGGTTTG | 133 | NM_001083951.2 |
IL-5 | ACCTGATGATTCCTACTCCTGA | CCCCTTGGACAGTTTGATTCT | 99 | NM_001082499.1 |
IFNG | GCTGTGTGCGATTTTGGGT | ATCCAGGAAAAGAGGCCCAC | 130 | NM_001081949 |
IL-4 | AAGAATGCCTGAGCGGACTG | TGGCTTCATTCACAGTACAGCA | 75 | NM_001082519.1 |
I-L2 | GAAGAAGAACTCAAACCTCTG | TTCCTGTCTCATCATCATATTC | 148 | NM_001085433.2 |
IL-3 | TGAAGGATCTAAACACGACACC | CCTTGAAACTAGGGACAGCTC | 96 | JL628807 |
B2M | TCCTGCTCGGGCTACTCTC | TGCTGGGTGACGTGAGTAAA | 83 | NM_001082502.3 |
SDHA | GCGCGCTTCAGACGATTTAT | CCAGTGCTCCTCAAATGGCT | 146 | XM_014734954.2 |
Parameter | Reference Range2-year-old Thoroughbred Horses in Training ∞ | Laboratory Established Reference Range for Horses [1] | April T0 | May T30 | July T90 |
---|---|---|---|---|---|
WBC (×1012/L) | 7.3–12.7 | 6.0–12.0 | 9.59 ± 0.37 | 10.11 ± 0.34 | 10.12 ± 0.34 |
RBC (×1012/L) | 8.7–11.7 | 8.6–12.0 | 10.29 ± 0.18 | 10.01 ± 0.19 | ** 9.92 ± 0.19 |
HGB (g/dL) | 12.8–16.6 | 11.5–18.0 | 14.67 ± 0.37 | 14.70 ± 0.51 | 14.23 ± 0.51 |
HCT (%) | 34–45 | 35–46 | 37.59 ± 0.63 | 36.53 ± 0.65 | 37.59 ± 0.65 |
PLT (×109/L) | 127–206 | 200–450 | 152.63 ±11.02 | 162.26 ± 9.63 | 145.68 ± 9.63 |
RDW-SD | NA | NA | 33.64 ± 0.41 | 32.78 ± 0.52 | 34.23 ± 0.52 |
RDV-CV | 24.0–27.0 | 23–27 | 27.49 ± 0.38 | 27.41 ± 0.27 | 27.43 ± 0.27 |
MCV (fL) | 37.0–42.1 | 41–49 | 36.71 ± 0.57 | 36.49 ± 0.17 | * 37.19 ± 0.17 |
MCH (pg) | 13.7–15.7 | 12.8–14.1 | 14.31 ± 0.16 | * 14.69 ± 0.07 | * 14.86 ± 0.07 |
MCHC (g/dL) | 35.9–37.9 | 34–38 | 39.05 ± 0.28 | * 40.27 ± 0.21 | * 40.03 ± 0.21 |
Neutrophils (×1012/L) | 4.0–6.0 | 2.7–6.7 | 4.66 ± 0.28 | 4.80 ± 0.33 | ** 5.27 ± 0.33 |
Eosinophils (×1012/L) | 0–0.3 | 0.1–0.6 | 0.17 ± 0.04 | 0.23 ± 0.05 | * 0.27 ± 0.05 |
Basophils (×1012/L) | 0–0.2 | 0-0.2 | 0.026 ± 0.03 | * 0.033 ± 0.03 | 0.026 ± 0.03 |
Lymphocytes (×1012/L) | 2.7–4.4 | 1.5–5.4 | 4.29 ± 0.23 | ** 4.57 ± 0.16 | 4.05 ± 0.16 |
Monocytes (×1012/L) | 0.26–0.56 | 0.1–0.2 | 0.45 ± 0.03 | 0.48 ± 0.03 | ** 0.49 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappelli, K.; Amadori, M.; Mecocci, S.; Miglio, A.; Antognoni, M.T.; Razzuoli, E. Immune Response in Young Thoroughbred Racehorses under Training. Animals 2020, 10, 1809. https://doi.org/10.3390/ani10101809
Cappelli K, Amadori M, Mecocci S, Miglio A, Antognoni MT, Razzuoli E. Immune Response in Young Thoroughbred Racehorses under Training. Animals. 2020; 10(10):1809. https://doi.org/10.3390/ani10101809
Chicago/Turabian StyleCappelli, Katia, Massimo Amadori, Samanta Mecocci, Arianna Miglio, Maria Teresa Antognoni, and Elisabetta Razzuoli. 2020. "Immune Response in Young Thoroughbred Racehorses under Training" Animals 10, no. 10: 1809. https://doi.org/10.3390/ani10101809