Effects of Decreasing Dietary Crude Protein Level on Growth Performance, Nutrient Digestion, Serum Metabolites, and Nitrogen Utilization in Growing Goat Kids (Capra. hircus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Sampling and Measurement
2.3. Statistical Analysis
3. Results
3.1. Intake, Growth Performance, and Nutrient Digestibility
3.2. Serum Metabolites
3.3. Nitrogen Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’Colmenero, J.J.; Broderick, G.A. Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef] [Green Version]
- Linn, J.G.; Olson, J.D. Using milk urea nitrogen to evaluate diets and reproductive performance of dairy cattle. In Proceedings of the 4-State Applied Nutrient Management Conference, Madison, WI, USA, 2–3 August 1995; pp. 155–167. [Google Scholar]
- Hristov, A.N.; Hanigan, M.; Cole, A.; Todd, R.; McAllister, T.A.; Ndegwa, P.M.; Rotz, A. Review: Ammonia emissions from dairy farms and beef feedlots. Can. Anim. Sci. 2011, 91, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Goetsch, A.L.; Nsahlai, I.V.; Sahlu, T.; Ferrell, C.L.; Owense, F.N.; Galyean, M.L.; Mooreg, J.E.; Johnson, Z.B. Metabolizable protein requirements for maintenance and gain of growing goats. Small Ruminant. Res. 2004, 53, 309–326. [Google Scholar] [CrossRef]
- FAOSTAT. PopStat. 2007. Available online: http://faostat.fao.org/site/336/default.aspx (accessed on 30 December 2019).
- Cole, N.A.; Clark, R.N.; Todd, R.W.; Richardson, C.R.; Gueye, A.; Greene, L.W.; McBride, K. Influence of dietary crude protein concentration and source on potential ammonia emissions from beef cattle manure. J. Anim. Sci. 2005, 83, 722–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danes, M.A.C.; Chagas, L.J.; Pedroso, A.M.; Santos, F.A.P. Effect of protein supplementation on milk production and metabolism of dairy cows grazing tropical grass. J. Dairy Sci. 2013, 96, 407–419. [Google Scholar] [CrossRef]
- Ling, Y.H.; Ren, C.H.; Guo, X.F.; Xu, L.N.; Huang, Y.F.; Luo, J.C.; Zhang, Y.H.; Zhang, X.R.; Zhang, Z.J. Identification and characterization of microRNAs in the ovaries of multiple and uniparous goats (Capra hircus) during follicular phase. BMC Genom. 2014, 15, 339. [Google Scholar] [CrossRef] [Green Version]
- Webb, E.C. Goat meat production, composition, and quality. Anim. Front. 2014, 4, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.F.; Zhu, W.Y.; Hang, S.Q. Effects of low-protein diet on the intestinal morphology, digestive enzyme activity, blood urea nitrogen, and gut microbiota and metabolites in weaned pigs. Arch. Anim. Nutr. 2019, 73, 287–305. [Google Scholar] [CrossRef]
- Fox, D.G.; Sniffen, C.J.; O’Comor, J.D.; Russell, J.B.; Van Soest, P.J. A net carbohydrate and protein system for evaluating cattle diets: III. Cattle Requirements and Diet Adequacy. J. Anim. Sci. 1992, 70, 3578–3596. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture of the People’s Republic of China. Feeding Standards of Meat-Producing Sheep and Goats; (NY/t 816-2004); Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2004.
- National Research Council (NRC). Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Wang, D.F.; Zhou, L.L.; Zhou, H.L.; Hou, G.Y.; Mao, L.; Shi, L.G.; Huang, X.Z.; Guan, S. Effects of nutrition level of concentrate-based diets on growth performance and carcass characteristics of Hainan black goats. Trop. Anim. Health Prod. 2014, 46, 783–788. [Google Scholar] [CrossRef]
- Huang, Y.L.; Wang, Y.; Lin, X.; Guo, C.H. Effects of supplemental copper on the serum lipid profile, meat quality, and carcass composition of goat kids. Biol. Trace Elem. Res. 2014, 159, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC). Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van, K.J.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar]
- Rahmatullah, M.; Boyde, T.R.C. Improvements in the determination of urea using diacetyl monoxime; methods with and without deproteinisation. Clin. Chim. Acta 1980, 107, 3–9. [Google Scholar] [CrossRef]
- Oser, B.L. Hawk’s Physiological Chemistry, 14th ed.; Tata McGraw-Hill Publishing Company Ltd.: New Delhi, India, 1965; pp. 1122–1134. [Google Scholar]
- Ma, T.; Deng, K.D.; Tu, Y.; Jiang, C.G.; Zhang, N.F.; Li, Y.L.; Si, B.W.; Lou, C.; Diao, Q.Y. Effect of dietary concentrate: Forage ratios and undegraded dietary protein on nitrogen balance and urinary excretion of purine derivatives in dorper × thin-tailed Han crossbred lambs. Asian-Australas. J. Anim. 2014, 27, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Shahjalal, M.; Bishwas, M.; Tareque, A.; Dohi, H. Growth and carcass characteristics of goats given diets varying protein concentration and feeding level. Asian-Australas. J. Anim. 2000, 13, 613–618. [Google Scholar] [CrossRef]
- Wang, D.F.; Zhou, L.L.; Zhou, H.L.; Hou, G.Y.; Shi, L.G.; Li, M.; Huang, X.Z.; Guan, S. Effects of nutritional level of concentrate-based diets on meat quality and expression levels of genes related to meat quality in Hainan black goats. J. Anim. Sci. 2015, 86, 166–173. [Google Scholar] [CrossRef]
- Cortese, M.; Segato, S.; Andrighetto, I.; Ughelini, N.; Chinello, M.; Schiavon, E.; Marchesini, G. The effects of decreasing dietary crude protein on the growth performance, feed efficiency and meat quality of finishing charolais bulls. Animals 2019, 9, 906. [Google Scholar] [CrossRef] [Green Version]
- Chanthakhoun, V.; Wanapat, M.; Berg, J. Level of crude protein in concentrate supplements influenced rumen characteristics, microbial protein synthesis and digestibility in swamp buffaloes (Bubalus bubalis). Livest. Sci. 2012, 144, 197–204. [Google Scholar] [CrossRef]
- Bahrami-Yekdangi, M.; Ghorbani, G.R.; Khorvash, M.; Khan, M.A.; Ghaffari, M.H. Reducing crude protein and rumen degradable protein with a constant concentration of rumen undegradable protein in the diet of dairy cows: Production performance, nutrient digestibility, nitrogen efficiency, and blood metabolites. J. Anim. Sci. 2016, 94, 718–725. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.Q.; Rahman, M.A.U.; Yang, H.; Shao, T.Q.; Qiu, Q.H.; Su, H.W.; Cao, B.H. Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls. Asian-Australas. J. Anim. Sci. 2018, 10, 1643–1653. [Google Scholar] [CrossRef] [PubMed]
- Pambu-Gollach, R.; Cronjé, P.B.; Casey, N.H. An evaluation of the use of blood metabolite concentrations as indicators of nutritional status in free-ranging indigenous goats. S. Afr. J. Anim. Sci. 2000, 30, 115–120. [Google Scholar]
- Tamminga, S. Nutrition management of dairy cows as a contribution to pollution control. J. Dairy Sci. 1992, 75, 345–357. [Google Scholar] [CrossRef]
- Das, A.; Katole, S.; Kumar, A.; Gupta, S.P.; Saini, M.; Swarup, D. Feed consumption, nutrient utilization and serum metabolite profile of captive blackbucks (Antelope cervicapra) feed diets varying in crude protein content. J. Anim. Physiol. Anim. Nutr. 2012, 96, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Gleghorn, J.F.; Elam, N.A.; Galyean, M.L.; Duff, G.C.; Cole, N.A.; Rivera, J.D. Effects of crude protein concentration and degradability on performance, carcass characteristics, and serum urea nitrogen concentrations in fnishing beef steers. J. Anim. Sci. 2004, 82, 2705–2717. [Google Scholar] [CrossRef] [PubMed]
- Pilachai, R.; Schonewille, J.T.; Tamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakorn, C.; Everts, H.; Hendriks, W.H. The effects of high levels of rumen degradable protein on rumen pH and histamine concentrations in dairy cows. J. Anim. Physiol. Anim. Nutr. 2012, 96, 206–213. [Google Scholar] [CrossRef]
- Aschenbach, J.R.; Kristense, N.B.; Donkin, S.S.; Hammon, H.M.; Penner, G.B. Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life 2010, 62, 869–877. [Google Scholar] [CrossRef]
- Muscher-Banse, A.S.; Piechotta, M.; Schröder, B.; Breves, G. Modulation of intestinal glucose transport in response to reduced nitrogen supply in young goats. J. Anim. Sci. 2012, 90, 4995–5004. [Google Scholar] [CrossRef] [Green Version]
- Pownall, H.J.; Brauchi, D.; Kilinc, C.; Osmundsen, K.; Pao, Q.; Payton-Ross, C.; Gotto, A.M., Jr.; Ballantyne, C.M. Correlation of serum triglyceride and its reduction by ω-3 fatty acids with lipid transfer activity and the neutral lipid compositions of high-density and low-density lipoproteins. Atherosclerosis 1999, 143, 285–297. [Google Scholar] [CrossRef]
- Cankaya, M.; Hernandez, A.M.; Ciftci, M.; Beydemir, S.; Ozdemir, H.; Budak, H.; Gulcin, I.; Comakli, V.; Emircupani, T.; Ekinci, D.; et al. An analysis of expression patterns of genes encoding proteins with catalytic activities. BMC Genom. 2007, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Shumaila, K.; Arif, M.B.; Bakhtyawar, A.K.; Sobia, D.; Muhammad, A.; Muhammad, A.; Furhan, I. Effect of age and gender on some blood biochemical parameters of apparently healthy small ruminants from Southern Punjab in Pakistan. Asian Pac. J. Trop. Biomed 2012, 2, 304–306. [Google Scholar]
- Starke, K.S.; Muscher, A.S.; Hirschhausen, N.; Pfeffer, E.; Breves, G.; Huber, K. Expression of urea transporters is affected by dietary nitrogen restriction in goat. J. Anim. Sci. 2012, 90, 3889–3897. [Google Scholar] [CrossRef] [PubMed]
- Glasscock, J.L.; Whitney, T.R.; Navarro, J.R.; Angle, S.G.; Holmes, A.R.; Stewart, W.C.; Scholljegerdes, E.J. Substituting ground woody plants for cottonseed hulls in kid goat feedlot diets: Growth performance and blood serum chemistry. J. Anim. Sci. 2018, 96, 2851–2860. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, E.; Specker, H.; Bornemann, S.; Holthausen, A.; Rodehutscord, M. Kinetics of endogenous urea in lactating goats and cows fed diets varying in their crude protein concentrations. Arch. Anim. Nutr. 2009, 63, 230–242. [Google Scholar] [CrossRef]
- Paengkoum, P.; Chen, S.; Paengkoum, S. Effects of crude protein and undegradable intake protein on growth performance, nutrient utilization, and rumen fermentation in growing Thai-indigenous beef cattle. Trop. Anim. Health Prod. 2019, 51, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Bussink, D.W.; Oenema, O. Ammonia volatilization from dairy farming systems in temperate areas: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 19–33. [Google Scholar] [CrossRef]
Item | Dietary Crude Protein level 1, % DM | ||
---|---|---|---|
14.8 | 13.4 | 12.0 | |
Ingredient, % of DM | |||
Ground corn grain | 13.0 | 17.0 | 21.0 |
Soybean meal, 43.5% CP 2 | 24.0 | 20.0 | 16.0 |
Wheat bran | 7.5 | 7.5 | 7.5 |
Sodium bicarbonate | 1.0 | 1.0 | 1.0 |
Salt | 1.0 | 1.0 | 1.0 |
Dicalcium phosphate | 0.5 | 0.5 | 0.5 |
Calcium carbonate | 1.0 | 1.0 | 1.0 |
Premix 3 | 1.0 | 1.0 | 1.0 |
Peanut vine 4 | 28.0 | 28.0 | 28.0 |
Chinese wild rye 5 | 22.0 | 22.0 | 22.0 |
Chemical Composition, % of Dry Matter | |||
Organic matter | 86.3 | 87.6 | 88.3 |
Crude protein | 14.8 | 13.4 | 12.0 |
Neutral detergent fiber | 46.4 | 45.6 | 44.8 |
Acid detergent fiber | 31.8 | 31.5 | 31.2 |
Ether extract | 3.74 | 3.62 | 3.27 |
Ash | 13.7 | 12.4 | 11.7 |
Metabolizable energy 6, MJ/Kg DM | 10.5 | 10.5 | 10.5 |
Crude Protein Level 1 | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|
14.8% | 13.4% | 12.0% | T | L | Q | ||
DMI, g/d | 657.5 | 664.9 | 672.9 | 15.21 | 0.78 | 0.48 | 0.99 |
ADG, g/d | 114 a | 116 a | 97.3 b | 5.24 | 0.04 | 0.04 | 0.12 |
FE | 0.173 a | 0.174 a | 0.145 b | 0.0079 | 0.02 | 0.02 | 0.12 |
Intake, per kg Metabolic Weight (BW0.75) | |||||||
OM, g/d | 49.6 b | 50.8 a,b | 54.4 a | 1.26 | <0.001 | 0.02 | 0.352 |
CP, g/d | 8.51 a | 7.77 b | 7.40 b | 0.182 | <0.001 | <0.001 | 0.301 |
NDF, g/d | 26.7 | 26.4 | 27.7 | 0.61 | 0.57 | 0.64 | 0.87 |
ADF, g/d | 18.3 | 18.2 | 19.2 | 0.43 | 0.12 | 0.25 | 0.65 |
Total Tract Apparent Digestibility, % | |||||||
DM | 61.2 a | 60.5 a,b | 56.9 b | 0.97 | 0.004 | 0.002 | 0.22 |
OM | 64.5 a,b | 65.9 a | 62.6 b | 0.85 | 0.02 | 0.11 | 0.03 |
CP | 67.5 a | 66.3 a | 64.1 b | 0.85 | <0.001 | <0.001 | 0.81 |
NDF | 55.3 a | 57.0 a | 52.6 b | 1.08 | 0.02 | 0.08 | 0.02 |
ADF | 43.4 a,b | 46.3 a | 41.6 b | 1.32 | 0.04 | 0.34 | 0.02 |
Variable | Crude Protein Level | SEM | p-Value 1 | ||||
---|---|---|---|---|---|---|---|
14.8% | 13.4% | 12.0% | T | L | Q | ||
Total protein, g/L | 78.6 | 77.6 | 79.4 | 1.17 | 0.534 | 0.606 | 0.322 |
Albumin, g/L | 34.8 | 35.7 | 35.4 | 0.41 | 0.262 | 0.253 | 0.240 |
Globulin g/L | 43.9 | 41.9 | 43.9 | 1.21 | 0.399 | 0.997 | 0.177 |
Blood urea nitrogen, mmol/L | 7.31 a | 6.80 b | 6.29 c | 0.253 | 0.024 | 0.160 | 0.017 |
Glucose, mmol/L | 3.02 a | 2.86 a,b | 2.60 b | 0.067 | <0.01 | <0.01 | 0.504 |
Total cholesterol, mmol/L | 2.23 | 2.54 | 2.51 | 0.112 | 0.130 | 0.093 | 0.25 |
Aspartate aminotransferase, U/L | 85.1 | 87.9 | 90.1 | 3.60 | 0.62 | 0.33 | 0.96 |
Alanine transaminase, U/L | 18.7 b | 19.4 a,b | 20.7 a | 0.67 | 0.04 | 0.04 | 0.70 |
Alkaline phosphatase, U/L | 360 | 358 | 386 | 13.5 | 0.252 | 0.912 | 0.09 |
Total bilirubin, μmol/L | 0.712 b | 0.780 a,b | 1.042 a | 0.0297 | <0.01 | <0.01 | <0.01 |
Creatinine, μmol/L | 43.8 b | 52.1 a | 52.4 a | 1.54 | <0.01 | <0.01 | 0.04 |
Triglyceride, mmol/L | 0.345 | 0.329 | 0.322 | 0.0162 | 0.593 | 0.331 | 0.781 |
High-density lipoprotein, mmol/L | 1.09 | 1.10 | 1.19 | 0.035 | 0.09 | 0.04 | 0.433 |
Low-density lipoprotein, mmol/L | 0.846 b | 1.00 a | 0.960 a | 0.0373 | 0.0121 | 0.0339 | 0.0309 |
Non-esterified fatty acid, mmol/L | 0.294 c | 0.399 b | 0.486 a | 0.0159 | <0.01 | <0.01 | 0.639 |
Variable | Crude Protein Level | SEM | p-Value 1 | ||||
---|---|---|---|---|---|---|---|
14.8% | 13.4% | 12.0% | T | L | Q | ||
Nitrogen intake, g/d | 15.6 a | 14.3 b | 12.9 c | 0.33 | <0.001 | <0.001 | 0.980 |
Fecal Nitrogen Excretion | |||||||
g/d | 5.07 a | 4.82 a,b | 4.63 b | 0.101 | 0.0105 | 0.0278 | 0.753 |
% of nitrogen intake | 32.5 b | 33.7 a,b | 35.9 a | 0.85 | <0.001 | <0.001 | 0.893 |
Urinary Nitrogen Excretion | |||||||
g/d | 6.74 a | 5.81 b | 4.87 c | 0.169 | <0.001 | <0.001 | 0.458 |
% of nitrogen intake | 43.2 a | 40.6 b | 37.8 c | 0.92 | <0.001 | <0.001 | 0.279 |
Total Nitrogen Excretion | |||||||
g/d | 11.8 a | 10.6 b | 9.51 c | 0.258 | <0.001 | <0.001 | <0.001 |
% of nitrogen intake | 75.7 a | 74.3 a,b | 73.7 b | 1.81 | <0.001 | <0.001 | 0.586 |
Nitrogen Retention | |||||||
g/d | 3.79 a | 3.68 a | 3.39 b | 0.104 | 0.0214 | 0.0451 | 0.879 |
% of nitrogen intake | 24.3 b | 25.7 a | 26.3 a | 0.42 | <0.001 | <0.001 | 0.648 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Xu, W.; Wei, C.; Zhang, Z.; Jiang, C.; Chen, X. Effects of Decreasing Dietary Crude Protein Level on Growth Performance, Nutrient Digestion, Serum Metabolites, and Nitrogen Utilization in Growing Goat Kids (Capra. hircus). Animals 2020, 10, 151. https://doi.org/10.3390/ani10010151
Zhu W, Xu W, Wei C, Zhang Z, Jiang C, Chen X. Effects of Decreasing Dietary Crude Protein Level on Growth Performance, Nutrient Digestion, Serum Metabolites, and Nitrogen Utilization in Growing Goat Kids (Capra. hircus). Animals. 2020; 10(1):151. https://doi.org/10.3390/ani10010151
Chicago/Turabian StyleZhu, Wen, Wei Xu, Congcong Wei, Zijun Zhang, Chunchao Jiang, and Xingyong Chen. 2020. "Effects of Decreasing Dietary Crude Protein Level on Growth Performance, Nutrient Digestion, Serum Metabolites, and Nitrogen Utilization in Growing Goat Kids (Capra. hircus)" Animals 10, no. 1: 151. https://doi.org/10.3390/ani10010151