Establishment of a Breeding Approach Combined with Gamma Ray Irradiation and Tissue Regeneration for Highbush Blueberry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Condition
2.2. Plant Regeneration and Adventitious Shoot Cultivation
2.3. Mutagenesis with Gamma Radiation
2.4. Phenotypic Evaluation of M1 Generation
2.5. Re-Sequencing
2.6. SNP Calling and Statistics
2.7. Statistical Analysis
3. Results
3.1. Establishing a Regeneration Method for Blueberry Cultivar LM1
3.2. Establishing a Mutation Breeding Approach Combining Gamma Irradiation Mutagenesis and Tissue Regeneration
3.3. Phenotypic Variation in the M1 Generation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, S.M.; Finley, J.W. The Delightful Domesticated American Blueberry: Some Research Challenges for Its next 100 Years. Agric. Res. 2011, 59, 2. [Google Scholar]
- Edger, P.P.; Iorizzo, M.; Bassil, N.V.; Benevenuto, J.; Ferrão, L.F.V.; Giongo, L.; Hummer, K.; Lawas, L.M.F.; Leisner, C.P.; Li, C. There and Back Again; Historical Perspective and Future Directions for Vaccinium Breeding and Research Studies. Hortic. Res. 2022, 9, uhac083. [Google Scholar] [CrossRef]
- Brevis, P.A.; Bassil, N.V.; Ballington, J.R.; Hancock, J.F. Impact of Wide Hybridization on Highbush Blueberry Breeding. J. Am. Soc. Hortic. Sci. 2008, 133, 427–437. [Google Scholar] [CrossRef]
- Moore, J.N. Improving Highbush Blueberries by Breeding and Selection. Euphytica 1965, 14, 39–48. [Google Scholar] [CrossRef]
- Cui, F.; Ye, X.; Li, X.; Yang, Y.; Hu, Z.; Overmyer, K.; Brosché, M.; Yu, H.; Salojärvi, J. Chromosome-Level Genome Assembly of the Diploid Blueberry Vaccinium darrowii Provides Insights into Its Subtropical Adaptation and Cuticle Synthesis. Plant Commun. 2022, 3, 100307. [Google Scholar] [CrossRef]
- Sharpe, R.H.; Darrow, G.M. Breeding Blueberries for the Florida Climate. Proc. Fla. State Hortic. Soc. 1960, 72, 308–311. [Google Scholar]
- Feng, W.; Gao, P.; Wang, X. AI Breeder: Genomic Predictions for Crop Breeding. New Crops 2024, 1, 100010. [Google Scholar] [CrossRef]
- He, Z.; Zhang, P.; Jia, H.; Zhang, S.; Nishawy, E.; Sun, X.; Dai, M. Regulatory Mechanisms and Breeding Strategies for Crop Drought Resistance. New Crops 2024, 1, 100029. [Google Scholar] [CrossRef]
- Sui, J.; Tian, H.; Ding, Z.; Kong, X. Crop Designs: The Ideal Root Architecture for Future Crop Breeding. New Crops 2024, 1, 100030. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and Application of Plant Mutagenesis in Crop Improvement: A Review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–16. [Google Scholar] [CrossRef]
- Afiya, R.S.; Senthilkumar, S.; Manivannan, S. Recent Trends with Mutation Breeding in Fruit Crop Improvement. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 393–403. [Google Scholar]
- Caligari, P.D.S.; Retamales, J.B.; Lobos, G.A. Blueberry Breeding for Chilean Conditions. Acta Hortic. 2009, 810, 125–128. [Google Scholar] [CrossRef]
- Lobos, G.A.; Hancock, J.F. Breeding Blueberries for a Changing Global Environment: A Review. Front. Plant Sci. 2015, 6, 782. [Google Scholar] [CrossRef] [PubMed]
- McCallum, S.; Woodhead, M.; Jorgensen, L.; Gordon, S.; Brennan, R.; Graham, J.; Hackett, C.A.; Rowland, L.J.; Hancock, J.F.; Olmstead, J.W.; et al. Developing Tools for Long-Term Breeding of Blueberry Germplasm for UK Production. Int. J. Fruit Sci. 2012, 12, 294–303. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H. The Current Status and Future of the Blueberry Industry in China. Acta Hortic. 2009, 810, 445–456. [Google Scholar] [CrossRef]
- Chai, Z.; Herrera-Balandrano, D.D.; Yu, H.; Beta, T.; Zeng, Q.; Zhang, X.; Tian, L.; Niu, L.; Huang, W. A Comparative Analysis on the Anthocyanin Composition of 74 Blueberry Cultivars from China. J. Food Compos. Anal. 2021, 102, 104051. [Google Scholar] [CrossRef]
- Yu, H.; Wei, J.; Yang, S.; Yang, X.; He, S. The Development Situation and Prospect of Blueberry Industry in China. In Proceedings of the XII International Vaccinium Symposium 1357, Debert, NS, Canada, 30 August–1 September 2021; pp. 325–328. [Google Scholar] [CrossRef]
- Beyaz, R.; Yildiz, M. The Use of Gamma Irradiation in Plant Mutation Breeding. Plant Eng. 2017, 17, 32–43. [Google Scholar] [CrossRef]
- Song, Y.; Luo, W.; Wu, Y.; Li, X.; Albert, N.W.; Zhang, Y.; Chen, X.; Lin-Wang, K.; Deng, C.H.; Hu, Z.; et al. A Callus-Derived Regeneration and Agrobacterium-Mediated Gene Transformation Developed for Bilberry, Vaccinium myrtillus. Plant Cell Tissue Organ Cult. 2023, 154, 177–187. [Google Scholar] [CrossRef]
- Chen, S. Ultrafast One-Pass FASTQ Data Preprocessing, Quality Control, and Deduplication Using Fastp. iMETA 2023, 2, e107. [Google Scholar] [CrossRef] [PubMed]
- Colle, M.; Leisner, C.P.; Wai, C.M.; Ou, S.; Bird, K.A.; Wang, J.; Wisecaver, J.H.; Yocca, A.E.; Alger, E.I.; Tang, H.; et al. Haplotype-Phased Genome and Evolution of Phytonutrient Pathways of Tetraploid Blueberry. GigaScience 2019, 8, giz012. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Long-Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, Q.; Wang, Z.; Cheng, X.; Yan, H.; Cai, S.; Zhang, H.; Liu, Q. Development of an Inducible DNA Barcoding System to Understand Lineage Changes in Arabidopsis Regeneration. Dev. Cell 2024, 60, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz Khan, M.; Akram, M.T.; Nabi, T.; Qadri, R.; A-Yahyai, R. Improvement in Fruit Crop Plants Through Mutation Breeding for Sustainable Development. In Plant Mutagenesis: Sustainable Agriculture and Rural Landscapes; Kumar, N., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 111–126. ISBN 978-3-031-50729-8. [Google Scholar]
- Penna, S.G.; Bhagwat, S. Mutagenesis and Selection: Reflections on the In Vivo and In Vitro Approaches for Mutant Development. In Mutation Breeding for Sustainable Food Production and Climate Resilience; Penna, S., Jain, S.M., Eds.; Springer Nature: Singapore, 2023; pp. 99–127. ISBN 9789811697203. [Google Scholar]
- Hallajian, M.T. Mutation Breeding and Drought Stress Tolerance in Plants. In Drought Stress Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives; Hossain, M.A., Wani, S.H., Bhattacharjee, S., Burritt, D.J., Tran, L.-S.P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 359–383. ISBN 978-3-319-32423-4. [Google Scholar]
- Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The Polyploidy and its Key Role in Plant Breeding. Planta 2016, 243, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Rowland, L.J.; Bell, D.J.; Alkharouf, N.; Bassil, N.V.; Drummond, F.A.; Beers, L.; Buck, E.J.; Finn, C.E.; Graham, J.; McCallum, S.; et al. Generating Genomic Tools for Blueberry Improvement. Int. J. Fruit. Sci. 2012, 12, 276–287. [Google Scholar] [CrossRef]
- Cimen, B.; Yesiloglu, T.; Incesu, M.; Yilmaz, B. Studies on Mutation Breeding in Citrus: Improving Seedless Types of ‘Kozan’ Common Orange by Gamma Irradiation. Sci. Hortic. 2021, 278, 109857. [Google Scholar] [CrossRef]
- Eun, C.-H.; Kim, I.-J. The Citrus Mutant Jedae-unshiu Induced by Gamma Irradiation Exhibits a Unique Fruit Shape and Increased Flavonoid Content. Plants 2022, 11, 1337. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Yuan, H.; Jin, Y.; Xia, C.; Zhu, J.; Che, J.; Yang, J.; Wang, X.; Zheng, B.; Yang, S.; et al. Establishment of a Breeding Approach Combined with Gamma Ray Irradiation and Tissue Regeneration for Highbush Blueberry. Agronomy 2025, 15, 217. https://doi.org/10.3390/agronomy15010217
Yu X, Yuan H, Jin Y, Xia C, Zhu J, Che J, Yang J, Wang X, Zheng B, Yang S, et al. Establishment of a Breeding Approach Combined with Gamma Ray Irradiation and Tissue Regeneration for Highbush Blueberry. Agronomy. 2025; 15(1):217. https://doi.org/10.3390/agronomy15010217
Chicago/Turabian StyleYu, Xuan, Haidi Yuan, Yihong Jin, Chuizheng Xia, Jiani Zhu, Jiali Che, Jiao Yang, Xiaofei Wang, Bingsong Zheng, Shufang Yang, and et al. 2025. "Establishment of a Breeding Approach Combined with Gamma Ray Irradiation and Tissue Regeneration for Highbush Blueberry" Agronomy 15, no. 1: 217. https://doi.org/10.3390/agronomy15010217
APA StyleYu, X., Yuan, H., Jin, Y., Xia, C., Zhu, J., Che, J., Yang, J., Wang, X., Zheng, B., Yang, S., Silvestri, C., Cui, F., & Zuo, J. (2025). Establishment of a Breeding Approach Combined with Gamma Ray Irradiation and Tissue Regeneration for Highbush Blueberry. Agronomy, 15(1), 217. https://doi.org/10.3390/agronomy15010217