Glomalin-Related Soil Protein Plays Different Roles in Soil Organic Carbon Pool Maintaining among Different Grassland Types
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Site Selection and Sampling Collection
2.3. Soil Physicochemical Properties Analysis
2.4. Extraction and Determination of GRSP in Soil
2.5. Meteorological Data Extraction
2.6. Data Calculation and Statistical Analysis
3. Results
3.1. Content of GRSP among Different Grassland Types
3.2. Contribution of GRSP-C to SOC among Different Grassland Types
3.3. Relationship between GRSP and Environmental Factors in the Different Soil Depths
3.4. Variation Partitioning of Influencing Factors in the Different Soil Depths
4. Discussion
4.1. GRSP Distribution Characteristics and Its Contribution to SOC among Different Grassland Types
4.2. Effects of Variables on GRSP in the Different Soil Depths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Treseder, K.K.; Holden, S.R. Fungal carbon sequestration. Science 2013, 340, 1528–1529. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zang, H.; Loeppmann, S.; Gube, M.; Kuzyakov, Y.; Pausch, J. Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biol. Biochem. 2020, 140, 107641. [Google Scholar] [CrossRef]
- Rillig, M.C.; Wright, S.F.; Nichols, K.A.; Schmidt, W.F.; Torn, M.S. Large contribution of arbuscular mycorrhizal fungi to soil carbon pool in tropical forest soils. Plant Soil 2001, 233, 167–177. [Google Scholar] [CrossRef]
- Brundrett, M.C.; Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018, 220, 1108–1115. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Wright, S.F.; Clark, D.A.; Ruess, R.W. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J. Ecol. 2004, 92, 278–287. [Google Scholar] [CrossRef]
- He, J.D.; Chi, G.G.; Zou, Y.N.; Shu, B.; Wu, Q.S.; Srivastava, A.K.; Kuca, K. Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. AppliedSoil Ecol. 2020, 154, 103592. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Y.; Li, P.; Xu, G.C.; Shi, P.; Zhang, Y. Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and Chinese pine forest on the Loess Plateau. Geoderma 2019, 334, 1–8. [Google Scholar] [CrossRef]
- Vranová, V.; Holik, L. Alteration in the amount of glomalin in transition from forest to field/meadow. Soil Use Manag. 2022, 38, 907–916. [Google Scholar]
- Banegas, N.; Santos, D.A.D.; Molina, F.G.; Albanesi, A.; Pedraza, R. Glomalin contribution to soil organic carbon under different pasture managements in a saline soil environment. Arch. Agron. Soil Sci. 2020, 68, 340–354. [Google Scholar] [CrossRef]
- Que, H.; Ge, Y.Y.; Kang, F.X.; Ling, W.T. Content and distribution of glomalin-related soil protein in soils of Nanjing under different land use types. Soils 2015, 47, 719–724. [Google Scholar]
- Bai, H.H.; Bao, X.L.; Sun, X.M.; Jiang, S.W. The effect of stocking rate on soil glomalin under traditional and mixed grazing systems in a temperate steppe. Procedia Environ. Sci. 2011, 11, 817–823. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.J.; He, X.Y.; Zhang, W.T.; Song, K.S.; Han, S.J. Role and variation of the amount and composition of glomalin in soil properties in farmland and adjacent plantations with reference to a primary forest in North-Eastern China. PLoS ONE 2015, 10, e0139623. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Zhong, Z.L.; Wang, Q.; Wang, H.M.; Fu, Y.J.; He, X.Y. Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles. Sci. Rep. 2017, 7, 13003. [Google Scholar] [CrossRef]
- Wen, M.; Shi, S.; Luo, X.; He, X.; Xu, Y.; Xu, X. Relationships between spatial distribution of arbuscular mycorrhizal colonization, glomalin-related soil protein, and rhizhospheric soil chemical properties under different aged mulberry orchards. Chin. J. Appl. Environ. Biol. 2020, 26, 1138–1146. [Google Scholar]
- Zhang, Y.J.; He, X.L.; Zhao, L.L.; Zhang, J.; Xu, W. Dynamics of arbuscular mycorrhizal fungi and glomalin under Psammochloa villosa along a typical dune in desert, North China. Symbiosis 2017, 73, 145–153. [Google Scholar] [CrossRef]
- Agnihotri, R.; Sharma, M.P.; Prakash, A.; Ramesh, A.; Bhattacharjya, S.; Patra, A.K.; Manna, M.C.; Kurganova, I.; Kuzyakov, Y. Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: Review of mechanisms and controls. Sci. Total Environ. 2022, 806, 150571. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.T.; Liu, W.; Wang, Y.; Zhao, M.; Fu, Y.; Dong, Y.L.; Luo, T.Y.; Fu, H.; Wang, Q. Effects of urbanization intensity on glomalin-related soil protein in Nanchang, China: Influencing factors and implications for greenspace soil improvement. J. Environ. Manag. 2022, 318, 115611. [Google Scholar] [CrossRef] [PubMed]
- Šarapatka, B.; Alvarado-Solano, D.P.; Cižmár, D. Can glomalin content be used as an indicator for erosion damage to soil and related changes in organic matter characteristics and nutrients? Catena 2019, 181, 104078. [Google Scholar] [CrossRef]
- Li, X.; Han, S.; Luo, X.; Chen, W.; Huang, Q. Arbuscular mycorrhizal-like fungi and glomalin-related soil protein drive the distributions of carbon and nitrogen in a large scale. J. Soils Sediment 2020, 202, 963–972. [Google Scholar] [CrossRef]
- Adame, M.F.; Wright, S.F.; Grinham, A.; Lobb, K.; Reymond, C.E.; Lovelock, C.E. Terrestrial-marine connectivity: Patterns of terrestrial soil carbon deposition in coastal sediments determined by analysis of glomalin related soil protein. Limnol. Oceanogr. 2012, 57, 1492–1502. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.K.; Ghosh, P. Distribution of soil organic carbon and glomalin related soil protein in reclaimed coal mineland chronosequence under tropical condition. Sci. Total Environ. 2018, 625, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, K.; Sun, X.; He, X. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of gymnocarpos przewalskii in northwest desert, China. Appl. Soil Ecol. 2022, 170, 104251. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.W.; Chen, J.Y.; Hong, H.L.; Lu, H.L.; Liu, J.C.; Dong, Y.W.; Yan, C.L. Glomalin-related soil protein deposition and carbon sequestration in the Old Yellow River delta. Sci. Total Environ. 2018, 625, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.L.; Wang, W.J.; Wang, Q.; Wu, Y.; Wang, H.M.; Pei, Z.X. Glomalin amount and compositional variation, and their associations with soil properties in farmland, northeastern China. J. Plant Nutr. Soil Sci. 2017, 180, 563–575. [Google Scholar] [CrossRef]
- Mao, L.; Ye, S.M.; Wang, S.Q. Soil nutrient contents and stoichiometry within aggregate size classes varied with tea plantation age and soil depth in southern Guangxi in China. Soil 2022, 8, 487–505. [Google Scholar] [CrossRef]
- Siegwart, L.; Piton, G.; Jourdan, C.; Sauze, J.; Sugihara, S.; Bertrand, I. Carbon and nutrient colimitations control the microbial response to fresh organic carbon inputs in soil at different depths. Geoderma 2023, 440, 116729. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Bernhardt, E.S. Biogeochemistry: An Analysis of Global Change, 3rd ed.; CABI: Wallingford, UK, 2013. [Google Scholar]
- Jiang, Z.Y.; Hu, Z.M.; Derrick, Y.F.; Han, D.R.; Wang, M.; Liu, M.; Zhang, M.; Guo, M.Y. Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: A meta-analysis. Glob. Change Biol. 2020, 26, 7186–7197. [Google Scholar] [CrossRef]
- Bi, X.; Li, B.; Fu, Q.; Fan, Y.; Ma, L.X.; Yang, Z.H.; Nan, B.; Dai, X.H.; Zhang, X.S. Effects of grazing exclusion on the grassland ecosystems of mountain meadows and temperate typical steppe in a mountain-basin system in Central Asia’s arid regions, China. Sci. Total Environ. 2018, 630, 254–263. [Google Scholar] [CrossRef]
- Fan, J.L.; Jin, H.; Zhang, C.H.; Zheng, J.J.; Zhang, J.; Han, G.D. Grazing intensity induced alternations of soil microbial community composition in aggregates drive soil organic carbon turnover in a desert steppe. Agric. Ecosyst. Environ. 2021, 313, 107387. [Google Scholar] [CrossRef]
- Yang, L.; Xiong, H.G. Charcteristic of vegetation of different grassland types in Altay Prefecture. Res. Soil Water Conserv. 2018, 25, 152–159. [Google Scholar]
- Carter, M.R. Soil Sampling and Methods of Analysis; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Wright, S.F.; Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 1996, 161, 575–586. [Google Scholar] [CrossRef]
- Zhang, J.; Ekblad, A.; Sigurdsson, B.D.; Wallander, H. The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-arctic grassland. Soil Biol. Biochem. 2020, 147, 107826. [Google Scholar] [CrossRef]
- Cheng, G.C.; Zhu, M.N.; Zhang, X.; Guo, Y.F.; Yang, Y.B.; Yun, C.; Wu, Y.; Wang, Q.; Wang, W.J.; Wang, H.M. Northeastern China shelterbelt-farmland glomalin differences depend on geo-climates, soil depth, and microbial interaction: Carbon sequestration, nutrient retention and implication. Appl. Soil Ecol. 2023, 191, 105068. [Google Scholar] [CrossRef]
- Huang, B.T.; Zhang, L.; Cao, Y.P.; Yang, Y.R.; Wang, P.; Li, Z.X.; Lin, Y. Effects of land-use type on soil organic carbon and carbon pool management index through arbuscular mycorrhizal fungi pathways. Glob. Ecol. Conserv. 2023, 43, e02432. [Google Scholar] [CrossRef]
- Irving, T.B.; Alptekin, B.; Kleven, B.; Ané, J. A critical review of 25 years of glomalin research: A better mechanical understanding and robust quantification techniques are required. New Phytol. 2021, 232, 1572–1581. [Google Scholar] [CrossRef]
- Treseder, K.K.; Turner, K.M. Glomalin in ecosystems. Soil Sci. Soc. Am. J. 2007, 71, 1257–1266. [Google Scholar] [CrossRef]
- Li, T.; Yuan, Y.; Mou, Z.; Li, Y.; Kuang, L.; Zhang, J.; Wu, W.; Wang, F.; Wang, J.; Lambers, H.; et al. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration. Glob. Change Biol. 2023, 29, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.P.; Zhang, X.L. Study on eco-tourism and sustainable development in nature reserve—A case of Khanas Nature Reserve. Sci. Geogr. Sin. 2000, 5, 450–455. [Google Scholar]
- Chen, S.; Zhou, Z.; Tsang, D.C.W.; Wang, J.; Odinga, E.S.; Gao, Y.Z. Glomalin-related soil protein reduces the sorption of polycyclic aromatic hydrocarbons by soils. Chemosphere 2020, 260, 127603. [Google Scholar] [CrossRef]
- Yan, B.; Wang, X.; Sun, Y.; Fan, B.; Shi, L.; Liu, G. Vegetation rehabilitation increases soil enzyme activities in degraded land via carbon supply and nitrogen retention. Eur. J. Soil Biol. 2020, 98, 103186. [Google Scholar] [CrossRef]
- Cissé, G.; Essi, M.; Kedi, B.; Nicolas, M.; Staunton, S. Accumulation and vertical distribution of glomalin-related soil protein in French temperate forest soils as a function of tree type, climate and soil properties. Catena 2023, 220, 106635. [Google Scholar] [CrossRef]
- Pei, L.X.; Ye, S.Y.; Yuan, H.M.; Pei, S.F.; Xie, S.C.; Wang, J. Glomalin-related soil protein distributions in the wetlands of the Liaohe Delta, Northeast China: Implications for carbon sequestration and mineral weathering of coastal wetlands. Limnol. Oceanogr. 2020, 65, 979–991. [Google Scholar] [CrossRef]
- Shao, P.S.; Liang, C.; Lynch, L.; Xie, H.T.; Bao, X.L. Reforestation accelerates soil organic carbon accumulation: Evidence from microbial biomarkers. Soil Biol. Biochem. 2019, 131, 182–190. [Google Scholar] [CrossRef]
- Gao, W.Q.; Wang, P.; Wu, Q.S. Functions and application of glomalin-related soil proteins: A review. Sains Malays. 2019, 48, 111–119. [Google Scholar] [CrossRef]
- Sun, X.Y.; Xing, Y.J.; Yan, G.Y.; Liu, G.C.; Wang, X.C.; Wang, Q.G. Dynamics of glomalin-related soil protein and soil aggregates during secondary succession in the temperate forest. Catena 2023, 234, 107602. [Google Scholar] [CrossRef]
- Spohn, M.; Giani, L. Water-stable aggregates, glomalin-related soil protein, and carbohydrates in a chronosequence of sandy hydromorphic soils. Soil Biol. Biochem. 2010, 42, 1505–1511. [Google Scholar] [CrossRef]
- D’Ath, M.K.; Sila-Nowicka, K.; Schwendenmann, L. Spatial variability of soil carbon across a hillslope restoration planting in New Zealand. Soil Res. 2024, 62, SR24012. [Google Scholar] [CrossRef]
- Rillig, M.C.; Wright, S.F.; Eviner, V.T. The role of arbuscular mycorrhyzal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant Soil 2002, 238, 325–333. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Zhong, Z.; Wang, H.; Fu, Y. Variation in glomalin in soil profiles and its association with climatic conditions, shelterbelt characteristics, and soil properties in poplar shelterbelts of Northeast China. J. For. Res. 2020, 31, 279–290. [Google Scholar] [CrossRef]
- Jirí, H.; Brtnick, M.; Jirí, K.; Michala, K.; Jan, J.S. Glomalin—Truths, myths, and the future of this elusive soil glycoprotein. Soil Biol. Biochem. 2020, 153, 108–116. [Google Scholar]
- Yang, Y.H.; Fang, J.Y.; Tang, Y.H.; Ji, C.J.; Zhang, C.Y.; He, J.S.; Zhu, B. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol. 2008, 14, 699–704. [Google Scholar] [CrossRef]
- Nunes, M.R.; de Lima, R.P.; Tormena, C.A.; Karlen, D.L. Corn seedling root growth response to soil physical quality. Agron. J. 2021, 113, 3135–3146. [Google Scholar] [CrossRef]
- Davison, J.; Moora, M.; Semchenko, M.; Adenan, S.B. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 2021, 231, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Yamuna, K.M.; Gabriele, E.S. Cation binding in a soil with low exchange capacity: Implication for the structural rigidity of soil organic matter. J. Plant Nutr. Soil Sci. 2018, 181, 453–461. [Google Scholar]
- Yang, J.; Zhan, C.; Li, Y.; Zhou, D.; Yu, Y.; Yu, J. Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China. Sci. Total Environ. 2018, 642, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Wang, Q.; Wang, H.; Nei, S.M.; Liang, Z.W. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP). Sci. Total Environ. 2017, 581–582, 657–665. [Google Scholar] [CrossRef] [PubMed]
Site | Longitude (°) | Latitude (°) | Altitude (m) | MAP (mm) | MAT (℃) | AET (mm/a) | PET (mm/a) | MI | AGB (g m−2) | Cov (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 90.48 | 46.97 | 2457.00 | 432.75 | −6.22 | 176.69 | 743.20 | −41.77 | 49.64 | 85.07 |
2 | 88.35 | 48.03 | 2107.97 | 439.84 | −5.23 | 281.44 | 1903.87 | −76.90 | 55.29 | 93.67 |
3 | 87.55 | 48.62 | 2358.11 | 536.44 | −9.83 | 214.52 | 873.41 | −38.58 | 37.08 | 86.00 |
4 | 88.37 | 47.97 | 2406.00 | 454.13 | −5.70 | 319.49 | 832.14 | −43.81 | 50.05 | 97.67 |
5 | 85.63 | 47.17 | 2484.00 | 467.56 | −5.07 | 315.20 | 1166.49 | −61.42 | 83.15 | 88.00 |
6 | 86.08 | 47.02 | 2403.00 | 449.98 | −5.19 | 192.51 | 531.79 | −21.48 | 38.04 | 80.00 |
7 | 90.31 | 47.19 | 2232.00 | 417.56 | −3.09 | 184.70 | 531.79 | −27.34 | 42.25 | 89.33 |
8 | 90.26 | 47.17 | 2136.00 | 386.40 | −6.43 | 152.67 | 767.45 | −43.56 | 16.07 | 83.67 |
9 | 90.85 | 46.83 | 2619.00 | 433.14 | −6.74 | 146.38 | 767.45 | −42.92 | 27.19 | 86.67 |
10 | 90.88 | 46.76 | 2655.00 | 438.03 | −2.92 | 186.04 | 683.06 | −74.27 | 24.17 | 49.00 |
11 | 90.32 | 47.09 | 1902.00 | 175.76 | −2.92 | 186.04 | −683.06 | −74.27 | 104.41 | 92.17 |
12 | 90.47 | 46.92 | 2049.00 | 191.10 | −3.08 | 176.69 | −1013.21 | −81.14 | 106.10 | 96.20 |
13 | 89.42 | 47.55 | 2050.00 | 182.10 | −3.06 | 195.25 | −2220.98 | −91.80 | 56.87 | 91.33 |
14 | 89.58 | 47.31 | 1790.00 | 175.33 | −0.64 | 173.02 | −1103.62 | −84.11 | 41.75 | 79.00 |
15 | 88.64 | 47.77 | 1094.00 | 177.71 | 2.80 | 215.59 | −2114.79 | −91.60 | 25.91 | 35.00 |
16 | 88.58 | 47.73 | 1546.00 | 184.48 | 1.71 | 220.45 | −1223.42 | −84.92 | 32.73 | 76.33 |
17 | 87.13 | 48.34 | 1579.68 | 319.95 | −0.19 | 234.60 | −1023.76 | −68.75 | 279.49 | 102.33 |
18 | 88.29 | 48.01 | 1784.00 | 237.57 | −2.42 | 286.88 | −1903.87 | −87.52 | 215.54 | 72.00 |
19 | 87.63 | 48.12 | 1517.00 | 251.90 | 1.27 | 238.43 | −977.06 | −74.22 | 119.59 | 78.00 |
20 | 86.12 | 47.12 | 1889.70 | 394.43 | 0.69 | 265.34 | −2052.23 | −80.78 | 79.82 | 93.00 |
21 | 86.93 | 48.74 | 1635.00 | 342.76 | −1.12 | 235.47 | −728.23 | −52.93 | 245.74 | 97.33 |
22 | 87.12 | 48.56 | 1186.20 | 313.48 | 0.53 | 234.09 | −1667.02 | −81.20 | 395.67 | 95.33 |
23 | 87.48 | 48.56 | 1287.31 | 253.24 | −0.90 | 225.50 | −571.42 | −55.68 | 279.29 | 94.33 |
24 | 86.70 | 48.50 | 1099.56 | 323.95 | 1.86 | 254.48 | −801.10 | −59.56 | 311.38 | 90.00 |
25 | 87.06 | 48.42 | 2104.84 | 351.62 | −2.80 | 237.57 | −1030.33 | −65.87 | 18.22 | 92.00 |
26 | 85.92 | 46.93 | 1593.00 | 347.76 | 2.39 | 276.68 | −986.72 | −64.76 | 28.49 | 57.00 |
27 | 84.84 | 46.80 | 2199.00 | 415.05 | −1.45 | 282.82 | −1396.61 | −70.28 | 42.85 | 87.67 |
28 | 84.87 | 46.76 | 1920.00 | 407.48 | −0.11 | 218.68 | −1032.71 | −60.54 | 26.48 | 75.67 |
29 | 90.23 | 46.96 | 1609.00 | 301.34 | 2.68 | 152.82 | 875.34 | −65.57 | 66.00 | 89.73 |
30 | 89.93 | 47.21 | 1297.00 | 277.15 | 4.36 | 163.83 | 879.06 | −68.47 | 13.96 | 35.67 |
31 | 89.89 | 47.22 | 1219.00 | 252.79 | 6.00 | 165.73 | 879.06 | −71.24 | 16.72 | 56.33 |
32 | 87.02 | 48.20 | 1144.24 | 298.38 | 5.28 | 226.75 | 1179.57 | −74.70 | 21.29 | 40.00 |
33 | 88.14 | 47.93 | 1007.00 | 265.64 | 6.28 | 275.49 | 1514.54 | −82.46 | 21.45 | 20.67 |
34 | 85.91 | 47.21 | 1662.59 | 345.29 | 2.01 | 264.95 | 852.59 | −59.50 | 82.50 | 70.67 |
35 | 86.13 | 47.18 | 1780.77 | 332.16 | 2.62 | 265.34 | 976.30 | −65.98 | 66.20 | 86.33 |
36 | 87.31 | 48.44 | 1062.45 | 319.71 | 4.21 | 235.66 | 797.58 | −59.92 | 248.95 | 70.33 |
37 | 90.32 | 46.85 | 1396.00 | 267.87 | 4.91 | 148.70 | 922.41 | −70.96 | 87.38 | 54.33 |
38 | 90.60 | 46.68 | 1456.00 | 283.46 | 3.82 | 128.86 | 936.11 | −69.72 | 61.68 | 65.00 |
39 | 90.02 | 46.82 | 1600.00 | 299.66 | 3.09 | 144.12 | 1261.34 | −76.24 | 23.31 | 88.83 |
40 | 90.77 | 46.58 | 1429.00 | 247.69 | 6.17 | 123.93 | 976.26 | −74.63 | 67.86 | 36.33 |
41 | 89.81 | 47.18 | 1211.00 | 249.65 | 6.29 | 159.32 | 874.18 | −71.44 | 33.91 | 53.00 |
42 | 89.10 | 47.40 | 1092.00 | 249.08 | 6.69 | 180.29 | 1201.82 | −79.27 | 17.13 | 43.37 |
43 | 89.24 | 47.32 | 1358.00 | 276.88 | 4.79 | 180.77 | 1200.04 | −76.92 | 22.48 | 38.03 |
44 | 89.74 | 46.98 | 1401.00 | 274.10 | 4.86 | 160.31 | 1104.02 | −75.17 | 26.74 | 47.37 |
45 | 88.84 | 47.57 | 915.00 | 225.40 | 8.38 | 188.92 | 1114.67 | −79.77 | 9.05 | 33.67 |
46 | 88.23 | 47.69 | 663.00 | 197.11 | 10.55 | 217.68 | 1201.98 | −83.60 | 61.93 | 35.00 |
47 | 87.57 | 48.07 | 1293.00 | 314.04 | 3.57 | 225.50 | 977.06 | −67.85 | 24.18 | 41.67 |
48 | 86.10 | 47.23 | 1383.00 | 300.69 | 4.74 | 248.83 | 976.30 | −69.20 | 20.32 | 48.33 |
49 | 86.73 | 48.46 | 1112.00 | 322.64 | 4.64 | 242.55 | 801.10 | −59.72 | 18.43 | 41.67 |
50 | 86.28 | 46.94 | 1513.00 | 304.98 | 4.40 | 244.07 | 1142.89 | −73.31 | 40.55 | 70.17 |
51 | 87.75 | 47.81 | 759.00 | 219.92 | 9.34 | 231.68 | 1001.49 | −78.04 | 56.43 | 43.00 |
52 | 85.76 | 46.80 | 1287.00 | 274.64 | 7.07 | 150.78 | 1160.03 | −76.32 | 0.00 | 0.00 |
53 | 87.08 | 47.04 | 621.00 | 165.82 | 13.09 | 219.81 | 1391.10 | −88.07 | 0.00 | 0.00 |
54 | 90.02 | 46.53 | 1190.00 | 232.89 | 7.92 | 137.39 | 1343.76 | −82.66 | 38.99 | 27.13 |
55 | 87.24 | 47.88 | 749.90 | 226.91 | 9.24 | 220.29 | 1401.28 | −83.80 | 36.56 | 47.33 |
56 | 86.24 | 47.30 | 1099.10 | 251.94 | 7.84 | 215.10 | 1170.41 | −78.47 | 35.48 | 40.33 |
57 | 85.96 | 46.43 | 772.00 | 191.86 | 13.02 | 130.77 | 1358.19 | −85.87 | 35.68 | 31.70 |
58 | 85.92 | 46.32 | 605.00 | 173.04 | 14.59 | 130.73 | 1510.92 | −88.54 | 35.68 | 31.70 |
59 | 88.33 | 47.65 | 733.00 | 200.56 | 10.26 | 214.19 | 1165.65 | −82.79 | 76.10 | 48.83 |
60 | 89.50 | 46.79 | 873.00 | 198.78 | 10.24 | 178.37 | 1334.63 | −85.10 | 76.78 | 47.40 |
61 | 90.09 | 45.16 | 1190.00 | 226.68 | 11.91 | 154.77 | 1487.82 | −84.76 | 35.68 | 31.70 |
62 | 86.27 | 47.84 | 463.20 | 182.27 | 13.00 | 196.52 | 1417.92 | −87.14 | 35.68 | 31.70 |
63 | 85.89 | 47.56 | 784.10 | 219.95 | 10.58 | 202.07 | 1468.21 | −85.01 | 70.87 | 48.67 |
64 | 89.56 | 46.27 | 877.00 | 159.13 | 19.77 | 179.00 | 1711.60 | −90.70 | 25.79 | 36.67 |
65 | 89.52 | 45.66 | 945.00 | 207.51 | 12.51 | 139.11 | 1482.02 | −85.99 | 50.39 | 28.67 |
66 | 89.49 | 45.39 | 328.00 | 220.98 | 12.55 | 147.58 | 1557.53 | −85.81 | 0.00 | 0.00 |
67 | 89.32 | 45.13 | 989.00 | 227.30 | 13.35 | 137.14 | 1830.05 | −87.57 | 0.00 | 0.00 |
68 | 86.84 | 45.41 | 362.00 | 161.74 | 18.62 | 251.63 | 1770.76 | −90.86 | 16.54 | 30.67 |
69 | 88.52 | 45.01 | 602.00 | 196.94 | 17.04 | 179.46 | 1589.04 | −87.60 | 33.49 | 47.67 |
Grassland Type | Soil Depth (cm) | pH | BD (g cm−3) | EC (μS cm−1) | SOC (g kg−1) | TN (g kg−1) | TP (g kg−1) |
---|---|---|---|---|---|---|---|
AM | 0–10 | 5.02 ± 0.43 | 1.01 ± 0.14 | 59.37 ± 14.91 | 72.40 ± 19.35 | 6.96 ± 1.32 | 1.66 ± 0.33 |
10–20 | 5.09 ± 0.42 | 1.08 ± 0.13 | 54.54 ± 53.03 | 52.36 ± 13.70 | 5.94 ± 1.48 | 1.52 ± 0.26 | |
MM | 0–10 | 6.29 ± 0.71 | 1.06 ± 0.24 | 90.28 ± 61.51 | 67.65 ± 18.89 | 6.98 ± 1.80 | 1.24 ± 0.37 |
10–20 | 6.26 ± 0.70 | 1.16 ± 0.21 | 76.26 ± 43.94 | 56.35 ± 13.92 | 6.21 ± 1.54 | 1.20 ± 0.38 | |
TMS | 0–10 | 7.00 ± 0.20 | 1.22 ± 0.25 | 80.18 ± 43.36 | 43.58 ± 20.22 | 3.94 ± 1.27 | 0.81 ± 0.12 |
10–20 | 7.10 ± 0.28 | 1.23 ± 0.18 | 73.19 ± 42.30 | 34.54 ± 15.10 | 3.81 ± 1.39 | 0.71 ± 0.10 | |
TS | 0–10 | 6.92 ± 0.26 | 1.39 ± 0.28 | 73.18 ± 75.56 | 20.13 ± 9.27 | 2.98 ± 1.26 | 0.81 ± 0.34 |
10–20 | 7.32 ± 0.37 | 1.35 ± 0.24 | 62.65 ± 42.55 | 17.54 ± 8.94 | 2.67 ± 0.95 | 0.74 ± 0.25 | |
TDS | 0–10 | 8.25 ± 0.85 | 1.64 ± 0.07 | 67.48 ± 23.76 | 10.37 ± 3.46 | 1.30 ± 0.34 | 1.20 ± 0.75 |
10–20 | 8.45 ± 0.74 | 1.56 ± 0.08 | 84.95 ± 58.40 | 6.69 ± 3.98 | 1.28 ± 0.46 | 0.91 ± 0.75 | |
TD | 0–10 | 8.81 ± 0.73 | 1.59 ± 0.12 | 128.38 ± 112.14 | 4.30 ± 1.98 | 0.70 ± 0.50 | 0.54 ± 0.24 |
10–20 | 8.79 ± 0.72 | 1.53 ± 0.15 | 129.23 ± 98.88 | 5.10 ± 4.04 | 0.78 ± 0.60 | 0.51 ± 0.25 |
Soil Depth (cm) | Variables | Explanatory Rate (%) % | Contribution Rate (%) Tion % | Pseudo-F F | p |
---|---|---|---|---|---|
0–10 | SOC | 80.4 | 87.6 | 275 | 0.002 |
MAT | 3.3 | 3.6 | 13.5 | 0.002 | |
Sand | 2.1 | 2.3 | 13.3 | 0.002 | |
SWC | 1.6 | 1.7 | 6.8 | 0.014 | |
AGB | 1 | 1.1 | 5.2 | 0.026 | |
Silt | 0.7 | 0.8 | 3.8 | 0.050 | |
AET | 0.6 | 0.7 | 4.2 | 0.056 | |
PET | 0.2 | 0.2 | 1.5 | 0.208 | |
MI | 0.4 | 0.4 | 2.5 | 0.108 | |
Cov | 0.1 | 0.1 | 0.7 | 0.432 | |
TP | <0.1 | <0.1 | 0.6 | 0.456 | |
MAP | <0.1 | <0.1 | 0.3 | 0.600 | |
pH | <0.1 | <0.1 | <0.1 | 0.852 | |
TN | <0.1 | <0.1 | <0.1 | 0.862 | |
EC | <0.1 | <0.1 | <0.1 | 0.912 | |
BD | <0.1 | 0.1 | 1.3 | 0.254 | |
10–20 | SOC | 83.5 | 93.1 | 339 | 0.002 |
MAT | 0.3 | 0.3 | 1.6 | 0.180 | |
Sand | 0.1 | 0.2 | 0.8 | 0.357 | |
SWC | 1.4 | 1.6 | 6.9 | 0.006 | |
AGB | <0.1 | <0.1 | 0.2 | 0.728 | |
Silt | 0.5 | 0.6 | 2.7 | 0.126 | |
AET | 0.2 | 0.2 | 0.9 | 0.348 | |
PET | <0.1 | <0.1 | 0.2 | 0.750 | |
MI | <0.1 | <0.1 | 0.2 | 0.740 | |
Cov | <0.1 | <0.1 | 0.2 | 0.714 | |
TP | 0.3 | 0.4 | 1.7 | 0.192 | |
MAP | <0.1 | <0.1 | <0.1 | 0.922 | |
pH | 0.8 | 0.9 | 4.3 | 0.038 | |
TN | 0.1 | 0.2 | 0.8 | 0.368 | |
EC | 1.8 | 2 | 7.9 | 0.010 | |
BD | 0.1 | 0.1 | 0.5 | 0.500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Fan, L.; Ma, X.; Liang, Y.; Mao, J.; Li, J.; Li, Y. Glomalin-Related Soil Protein Plays Different Roles in Soil Organic Carbon Pool Maintaining among Different Grassland Types. Agronomy 2024, 14, 1823. https://doi.org/10.3390/agronomy14081823
Yang M, Fan L, Ma X, Liang Y, Mao J, Li J, Li Y. Glomalin-Related Soil Protein Plays Different Roles in Soil Organic Carbon Pool Maintaining among Different Grassland Types. Agronomy. 2024; 14(8):1823. https://doi.org/10.3390/agronomy14081823
Chicago/Turabian StyleYang, Meiniu, Lianlian Fan, Xuexi Ma, Yuanye Liang, Jiefei Mao, Jiangyue Li, and Yaoming Li. 2024. "Glomalin-Related Soil Protein Plays Different Roles in Soil Organic Carbon Pool Maintaining among Different Grassland Types" Agronomy 14, no. 8: 1823. https://doi.org/10.3390/agronomy14081823