New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
Abstract
:1. Introduction
2. Mathematical Background
3. General Description of the Proposed Method
4. Applications
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller Kenneth, S.; Bertram, R. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Guy, J. On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion. Appl. Math. Lett. 2005, 18, 817–826. [Google Scholar]
- Keith, O.; Jerome, S. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Michele, C. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar]
- Samko Stefan, G. Fractional Integrals and Derivatives, Theory and Applications; CRC Press: Boca Raton, FL, USA, 1987. [Google Scholar]
- Marchaud, A. Sur les Dérivées et sur les Différences des Fonctions de Variables Réelles. Ph.D. Thesis, Gauthier-Villars, Paris, France, 1927. [Google Scholar]
- Samko, A.S.; Kilbas, A.G.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
- Humberto, R.; Makhmadiyor, Y. The Chen-Marchaud fractional integro-differentiation in the variable exponent Lebesgue spaces. Fract. Calc. Appl. Anal. 2011, 14, 343–360. [Google Scholar]
- Davison, C.; Essex, M. Fractional differential equations and initial value problems. Math. Sci. 1998, 33, 108–116. [Google Scholar]
- Coimbra Carlos, F.M. Mechanics with variable-order differential operators. Annalen Physik. 2003, 12, 692–703. [Google Scholar] [CrossRef]
- Maja, A.; Pecaric, J.; Peric, I. Improvements of composition rule for the Canavati fractional derivatives and applications to Opial-type inequalities. Dynam. Syst. Appl. 2011, 20, 383–394. [Google Scholar]
- Osler Thomas, J. Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 1970, 18, 658–674. [Google Scholar] [CrossRef]
- Yang, X.-J. Local Fractional Functional Analysis & Its Applications; Asian Academic Publisher Limited: Hongkong, China, 2011. [Google Scholar]
- El-Sayed, A.M.A.; Gaber, M. On the finite Caputo and finite Riesz derivatives. Electron. J. Theor. Phys. 2006, 3, 81–95. [Google Scholar]
- Roshdi, K.; Mohammed, A.H.; Abdelrahman, Y.; Mohammad, S. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar]
- Yépez-Martínez, H.; Gómez-Aguilar, J.F. Fractional sub-equation method for Hirota–Satsuma-coupled KdV equation and coupled mKdV equation using the Atangana’s conformable derivative. Waves Random Complex Media 2019, 29, 678–693. [Google Scholar] [CrossRef]
- Atangana, A.; Alsaedi, A. Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal. Open Phys. 2016, 14, 145–149. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Zhang, J. The G′/G-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 2008, 372, 417–423. [Google Scholar] [CrossRef]
- Seadawy, A.R.; El-Rashidy, K. Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma. Results Phys. 2018, 8, 1216–1222. [Google Scholar] [CrossRef]
- Groves, M.D.; Sun, S.-M. Fully localised solitary-wave solutions of the three-dimensional gravity–capillary water-wave problem. Arch. Rational Mech. Anal. 2008, 188, 1–91. [Google Scholar] [CrossRef] [Green Version]
- De Bouard, A.; Saut, J.-C. Solitary Waves of Generalized Kadomtsev-Petviashvili Equations; Elsevier: Amsterdam, The Netherlands, 1997; pp. 211–236. [Google Scholar]
- Tzvetkov, N. Global low-regularity solutions for Kadomtsev-Petviashvili equation. Differ. Integral Equ. 2000, 13, 1289–1320. [Google Scholar]
- Harvey, S.; Allan, F. An analytical model of periodic waves in shallow water. Stud. Appl. Math. 1985, 73, 183–220. [Google Scholar]
- Joe, H.; Norman, S.; Harvey, S. Two-dimensional periodic waves in shallow water. J. Fluid Mech. 1989, 209, 567–589. [Google Scholar]
- Joe, H.; Daryl, M.; Norman, S.; Harvey, S. Two-dimensional periodic waves in shallow water. Part 2. Asymmetric waves. J. Fluid Mech. 1995, 285, 95–122. [Google Scholar]
- Eryk, I.; George, R. Nonlinear Waves, Solitons and Chaos; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Selwyn Gary, S.; Haller Kurt, L.; Patterson Edward, F. Trapping and behavior of particulates in a radio frequency magnetron plasma etching tool. J. Vac. Sci. Technol. Vac. Surf. Film 1993, 11, 1132–1135. [Google Scholar] [CrossRef]
- Kersten, H.; Deutsch, H.; Stoffels, E.; Stoffels, W.W.; Kroesen, G.M.W.; Hippler, R. Micro-Disperse Particles in Plasmas: From Disturbing Side Effects to New Applications. Contrib. Plasma Phys. 2001, 41, 598–609. [Google Scholar] [CrossRef]
- Khader, M.M.; Saad, K.M.; Hammouch, Z.; Baleanu, D. A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives. Appl. Numer. Math. 2021, 161, 137–146. [Google Scholar] [CrossRef]
- Van Au, V.; Jafari, H.; Hammouch, Z.; Tuan, N.H. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Am. Inst. Math. Sci. 2021, 29, 1529–1534. [Google Scholar]
- Xu, M.-J.; Tian, S.-F.; Tu, J.-M.; Zhang, T.-T. Lie symmetry analysis, conservation laws, solitary and periodic waves for a coupled Burger equation. Superlattices Microstruct. 2017, 101, 415–428. [Google Scholar] [CrossRef]
- Zou, L.; Yu, Z.-B.; Tian, S.-F.; Wang, X.B.; Li, J. Lie point symmetries, conservation laws, and analytical solutions of a generalized time-fractional Sawada–Kotera equation. Waves Random Complex Media 2019, 29, 509–522. [Google Scholar] [CrossRef]
- Feng, L.-L.; Tian, S.-F.; Zhang, T.-T.; Zhou, J. Lie symmetries, conservation laws and analytical solutions for two-component integrable equations. Chin. J. Phys. 2017, 55, 996–1010. [Google Scholar] [CrossRef]
- Emmy, N. Invariant variation problems. Transp. Theory Stat. Phys. 1971, 1, 186–207. [Google Scholar]
- Ibragimov Nail, H. A new conservation theorem. J. Math. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-B.; Tian, S.-F.; Qin, C.-Y.; Zhang, T.-T. Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation. EPl Europhys. Lett. 2016, 114, 20003. [Google Scholar] [CrossRef]
- Feng, L.-L.; Tian, S.-F.; Wang, X.-B.; Zhang, T.-T. Lie symmetry analysis, conservation laws and exact power series solutions for time-fractional Fordy–Gibbons equation. Commun. Theor. 2016, 66, 321. [Google Scholar] [CrossRef]
- Gazizov Rafail, K.; Ibragimov Nail, H.; Lukashchuk, S.Y. Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations. Commun. Nonlinear Sci. Numer. Simul. 2015, 23, 153–163. [Google Scholar] [CrossRef]
- Abdul-Majid, W.; El-Tantawy, S.A. A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 2016, 83, 1709. [Google Scholar]
- Abdul-Majid, W. The Camassa–Holm–KP equations with compact and noncompact travelling wave solutions. Appl. Math. Comput. 2005, 170, 347–360. [Google Scholar]
- Qin, C.-Y.; TTian, S.-F.; Wang, X.-B.; Zhang, T.-T. On breather waves, rogue waves and solitary waves to a generalized (2+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 2018, 62, 378–385. [Google Scholar] [CrossRef]
- Anjan, B. 1-Soliton solution of the generalized Camassa–Holm Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2524–2527. [Google Scholar]
- Ghodrat, E.; Yousefzadeh, F.N.; Houria, T.; Anjan, B. Exact solutions of the (2+1)-dimensional Camassa–Holm Kadomtsev–Petviashvili equation. Nonlinear Anal. Model. Control. 2012, 17, 280–296. [Google Scholar]
- Wang, Z.; Liu, X. Symmetry reductions and exact solutions of the (2+1)-dimensional Camassa–Holm Kadomtsev–Petviashvili equation. PRAMANA 2015, 85, 3–16. [Google Scholar]
- Abdon, A. Derivative with a New Parameter: Theory, Methods and Applications; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulut, S.; Karabacak, M.; Ahmad, H.; Askar, S. New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics. Symmetry 2021, 13, 2017. https://doi.org/10.3390/sym13112017
Bulut S, Karabacak M, Ahmad H, Askar S. New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics. Symmetry. 2021; 13(11):2017. https://doi.org/10.3390/sym13112017
Chicago/Turabian StyleBulut, Sadullah, Mesut Karabacak, Hijaz Ahmad, and Sameh Askar. 2021. "New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics" Symmetry 13, no. 11: 2017. https://doi.org/10.3390/sym13112017