Advancing Digital Medicine with Wearables in the Wild
1. Evaluation Framework for Digital Medicine Technologies
2. Overview of Special Issue on Applications of Wearables in Digital Medicine
3. Areas of Opportunity for Digital Medicine
Funding
Conflicts of Interest
References
- Elenko, E.; Underwood, L.; Zohar, D. Defining Digital Medicine. Nat. Biotechnol. 2015, 33, 456–461. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Papapetropoulos, S.; Xiong, M.; Kieburtz, K. The First Frontier: Digital Biomarkers for Neurodegenerative Disorders. Digit. Biomark 2017, 1, 6–13. [Google Scholar] [CrossRef]
- Torous, J.; Rodriguez, J.; Powell, A. The New Digital Divide for Digital Biomarkers. Digit. Biomark 2017, 1, 87–91. [Google Scholar] [CrossRef]
- Lyles, C.R.; Wachter, R.M.; Sarkar, U. Focusing on Digital Health Equity. JAMA 2021, 326, 1795–1796. [Google Scholar] [CrossRef]
- Mathews, S.C.; McShea, M.J.; Hanley, C.L.; Ravitz, A.; Labrique, A.B.; Cohen, A.B. Digital Health: A Path to Validation. NPJ Digit. Med. 2019, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- Goldsack, J.C.; Coravos, A.; Bakker, J.P.; Bent, B.; Dowling, A.V.; Fitzer-Attas, C.; Godfrey, A.; Godino, J.G.; Gujar, N.; Izmailova, E.; et al. Verification, Analytical Validation, and Clinical Validation (V3): The Foundation of Determining Fit-for-Purpose for Biometric Monitoring Technologies (BioMeTs). NPJ Digit. Med. 2020, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Digital Medicine Society (DiMe)—Advancing Digital Medicine to Optimize Human Health. Available online: https://www.dimesociety.org/ (accessed on 1 June 2022).
- Chromik, J.; Kirsten, K.; Herdick, A.; Kappattanavar, A.M.; Arnrich, B. SensorHub: Multimodal Sensing in Real-Life Enables Home-Based Studies. Sensors 2022, 22, 408. [Google Scholar] [CrossRef]
- Jacobs, D.; Farid, L.; Ferré, S.; Herraez, K.; Gracies, J.-M.; Hutin, E. Evaluation of the Validity and Reliability of Connected Insoles to Measure Gait Parameters in Healthy Adults. Sensors 2021, 21, 6543. [Google Scholar] [CrossRef]
- Bai, C.; Wanigatunga, A.A.; Saldana, S.; Casanova, R.; Manini, T.M.; Mardini, M.T. Are Machine Learning Models on Wrist Accelerometry Robust against Differences in Physical Performance among Older Adults? Sensors 2022, 22, 3061. [Google Scholar] [CrossRef]
- Jacobsen, M.; Dembek, T.A.; Ziakos, A.-P.; Gholamipoor, R.; Kobbe, G.; Kollmann, M.; Blum, C.; Müller-Wieland, D.; Napp, A.; Heinemann, L.; et al. Reliable Detection of Atrial Fibrillation with a Medical Wearable during Inpatient Conditions. Sensors 2020, 20, 5517. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, S.-R.; Choi, E.-K.; Ahn, H.-J.; Song, H.-S.; Lee, Y.-S.; Oh, S. Validation of Adhesive Single-Lead ECG Device Compared with Holter Monitoring among Non-Atrial Fibrillation Patients. Sensors 2021, 21, 3122. [Google Scholar] [CrossRef]
- Behzadi, A.; Sepehri Shamloo, A.; Mouratis, K.; Hindricks, G.; Arya, A.; Bollmann, A. Feasibility and Reliability of SmartWatch to Obtain 3-Lead Electrocardiogram Recordings. Sensors 2020, 20, 5074. [Google Scholar] [CrossRef]
- Sabry, F.; Eltaras, T.; Labda, W.; Hamza, F.; Alzoubi, K.; Malluhi, Q. Towards On-Device Dehydration Monitoring Using Machine Learning from Wearable Device’s Data. Sensors 2022, 22, 1887. [Google Scholar] [CrossRef]
- Li, Z.; He, W. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model. Sensors 2021, 21, 7207. [Google Scholar] [CrossRef]
- Pagnamenta, S.; Grønvik, K.B.; Aminian, K.; Vereijken, B.; Paraschiv-Ionescu, A. Putting Temperature into the Equation: Development and Validation of Algorithms to Distinguish Non-Wearing from Inactivity and Sleep in Wearable Sensors. Sensors 2022, 22, 1117. [Google Scholar] [CrossRef]
- Weed, L.; Little, C.; Kasser, S.L.; McGinnis, R.S. A Preliminary Investigation of the Effects of Obstacle Negotiation and Turning on Gait Variability in Adults with Multiple Sclerosis. Sensors 2021, 21, 5806. [Google Scholar] [CrossRef]
- Adamowicz, L.; Karahanoglu, F.I.; Cicalo, C.; Zhang, H.; Demanuele, C.; Santamaria, M.; Cai, X.; Patel, S. Assessment of Sit-to-Stand Transfers during Daily Life Using an Accelerometer on the Lower Back. Sensors 2020, 20, 6618. [Google Scholar] [CrossRef]
- McGinnis, R.S.; McGinnis, E.W.; Hruschak, J.; Lopez-Duran, N.L.; Fitzgerald, K.; Rosenblum, K.L.; Muzik, M. Rapid Detection of Internalizing Diagnosis in Young Children Enabled by Wearable Sensors and Machine Learning. PLoS ONE 2019, 14, e0210267. [Google Scholar] [CrossRef]
- McGinnis, E.W.; McGinnis, R.S.; Hruschak, J.; Bilek, E.; Ip, K.; Morlen, D.; Lawler, J.; Lopez-Duran, N.L.; Fitzgerald, K.; Rosenblum, K.L.; et al. Wearable Sensors Detect Childhood Internalizing Disorders during Mood Induction Task. PLoS ONE 2018, 13, e0195598. [Google Scholar] [CrossRef] [Green Version]
- McGinnis, E.; McGinnis, R.; Muzik, M.; Hruschak, J.; Lopez-Duran, N.; Perkins, N.; Fitzgerald, K.; Rosenblum, K. Movements Indicate Threat Response Phases in Children At-Risk for Anxiety. IEEE J. Biomed. Health Inform. 2017, 21, 1460–1465. [Google Scholar] [CrossRef] [Green Version]
- McGinnis, E.W.; Anderau, S.P.; Hruschak, J.; Gurchiek, R.D.; Lopez-Duran, N.L.; Fitzgerald, K.; Rosenblum, K.L.; Muzik, M.; McGinnis, R. Giving Voice to Vulnerable Children: Machine Learning Analysis of Speech Detects Anxiety and Depression in Early Childhood. IEEE J. Biomed. Health Inform. 2019, 23, 2294–2301. [Google Scholar] [CrossRef] [PubMed]
- Mcginnis, E.W.; Scism, J.; Hruschak, J.; Muzik, M.; Rosenblum, K.L.; Fitzgerald, K.; Copeland, W.; Mcginnis, R. Digital Phenotype for Childhood Internalizing Disorders: Less Positive Play and Promise for a Brief Assessment Battery. IEEE J. Biomed. Health Inform. 2021, 25, 3176–3184. [Google Scholar] [CrossRef] [PubMed]
- Schinle, M.; Erler, C.; Schneider, T.; Plewnia, J.; Stork, W. Data-Driven Development of Digital Health Applications on the Example of Dementia Screening. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23–25 June 2021; pp. 1–6. [Google Scholar]
- Cella, M.; He, Z.; Killikelly, C.; Okruszek, Ł.; Lewis, S.; Wykes, T. Blending Active and Passive Digital Technology Methods to Improve Symptom Monitoring in Early Psychosis. Early Interv. Psychiatry 2019, 13, 1271–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisniewski, H.; Henson, P.; Torous, J. Using a Smartphone App to Identify Clinically Relevant Behavior Trends via Symptom Report, Cognition Scores, and Exercise Levels: A Case Series. Front. Psychiatry 2019, 23, 652. [Google Scholar] [CrossRef] [Green Version]
- McGinnis, E.; O’Leary, A.; Gurchiek, R.; Copeland, W.E.; McGinnis, R. A Digital Therapeutic Intervention Delivering Biofeedback for Panic Attacks (PanicMechanic): Feasibility and Usability Study. JMIR Form. Res. 2022, 6, e32982. [Google Scholar] [CrossRef]
- McGinnis, R.; McGinnis, E.W.; Petrillo, C.J.; Ferri, J.; Scism, J.; Price, M. Validation of Smartphone Based Heart Rate Tracking for Remote Treatment of Panic Attacks. IEEE J. Biomed. Health Inform. 2020, 25, 656–662. [Google Scholar] [CrossRef]
- Gideon, J.; Provost, E.M.; McInnis, M. Mood State Prediction from Speech of Varying Acoustic Quality for Individuals with Bipolar Disorder. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 2359–2363. [Google Scholar]
- Matton, K.; McInnis, M.G.; Provost, E.M. Into the Wild: Transitioning from Recognizing Mood in Clinical Interactions to Personal Conversations for Individuals with Bipolar Disorder. Interspeech 2019, 1438–1442. [Google Scholar] [CrossRef] [Green Version]
- Torous, J.; Larsen, M.E.; Depp, C.; Cosco, T.D.; Barnett, I.; Nock, M.K.; Firth, J. Smartphones, Sensors, and Machine Learning to Advance Real-Time Prediction and Interventions for Suicide Prevention: A Review of Current Progress and Next Steps. Curr. Psychiatry Rep. 2018, 20, 51. [Google Scholar] [CrossRef]
- Sels, L.; Homan, S.; Ries, A.; Santhanam, P.; Scheerer, H.; Colla, M.; Vetter, S.; Seifritz, E.; Galatzer-Levy, I.; Kowatsch, T.; et al. SIMON: A Digital Protocol to Monitor and Predict Suicidal Ideation. Front. Psychiatry 2021, 12, 554811. [Google Scholar] [CrossRef]
- Regalia, G.; Onorati, F.; Lai, M.; Caborni, C.; Picard, R.W. Multimodal Wrist-Worn Devices for Seizure Detection and Advancing Research: Focus on the Empatica Wristbands. Epilepsy Res. 2019, 153, 79–82. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.; Nathan, V.; Kuang, J.; Kim, J.; Gao, J.A.; Olgin, J. Towards Early Detection and Burden Estimation of Atrial Fibrillation in an Ambulatory Free-Living Environment. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 86. [Google Scholar] [CrossRef]
- Gurchiek, R.D.; Choquette, R.H.; Beynnon, B.D.; Slauterbeck, J.R.; Tourville, T.W.; Toth, M.J.; McGinnis, R.S. Open-Source Remote Gait Analysis: A Post-Surgery Patient Monitoring Application. Sci. Rep. 2019, 9, 17966. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.M.; Tulipani, L.J.; Gurchiek, R.D.; Allen, D.A.; Adamowicz, L.; Larie, D.; Solomon, A.J.; Cheney, N.; McGinnis, R.S. Wearables and Deep Learning Classify Fall Risk from Gait in Multiple Sclerosis. IEEE J. Biomed. Health Inform. 2021, 25, 1824–1831. [Google Scholar] [CrossRef] [PubMed]
- Gurchiek, R.D.; Cheney, N.; McGinnis, R.S. Estimating Biomechanical Time-Series with Wearable Sensors: A Systematic Review of Machine Learning Techniques. Sensors 2019, 19, 5227. [Google Scholar] [CrossRef] [Green Version]
- Frechette, M.L.; Meyer, B.M.; Tulipani, L.J.; Gurchiek, R.D.; McGinnis, R.S.; Sosnoff, J.J. Next Steps in Wearable Technology and Community Ambulation in Multiple Sclerosis. Curr. Neurol. Neurosci. Rep. 2019, 19, 80. [Google Scholar] [CrossRef]
- Gurchiek, R.D.; Beynnon, B.D.; Agresta, C.; Choquette, R.H.; McGinnis, R.S. Wearable Sensors for Remote Patient Monitoring in Orthopedics: A Narrative Review. Minerva Orthop. 2021, 72, 484–497. [Google Scholar] [CrossRef]
- Czech, M.D.; Psaltos, D.; Zhang, H.; Adamusiak, T.; Calicchio, M.; Kelekar, A.; Messere, A.; Van Dijk, K.R.A.; Ramos, V.; Demanuele, C.; et al. Age and Environment-Related Differences in Gait in Healthy Adults Using Wearables. NPJ Digit. Med. 2020, 3, 127. [Google Scholar] [CrossRef]
- Tulipani, L.J.; Meyer, B.; Fox, S.; Solomon, A.J.; Mcginnis, R.S. The Sit-to-Stand Transition as a Biomarker for Impairment: Comparison of Instrumented 30-Second Chair Stand Test and Daily Life Transitions in Multiple Sclerosis. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1213–1222. [Google Scholar] [CrossRef]
- Tulipani, L.J.; Meyer, B.; Larie, D.; Solomon, A.J.; McGinnis, R.S. Metrics Extracted from a Single Wearable Sensor during Sit-Stand Transitions Relate to Mobility Impairment and Fall Risk in People with Multiple Sclerosis. Gait Posture 2020, 80, 361–366. [Google Scholar] [CrossRef]
- Bell, B.M.; Alam, R.; Alshurafa, N.; Thomaz, E.; Mondol, A.S.; de la Haye, K.; Stankovic, J.A.; Lach, J.; Spruijt-Metz, D. Automatic, Wearable-Based, in-Field Eating Detection Approaches for Public Health Research: A Scoping Review. NPJ Digit. Med. 2020, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Carreiro, S.; Taylor, M.; Shrestha, S.; Reinhardt, M.; Gilbertson, N.; Indic, P. Realize, Analyze, Engage (RAE): A Digital Tool to Support Recovery from Substance Use Disorder. J. Psychiatr. Brain. Sci. 2021, 6, e210002. [Google Scholar] [CrossRef] [PubMed]
- Spruijt-Metz, D.; Nilsen, W. Dynamic Models of Behavior for Just-in-Time Adaptive Interventions. IEEE Pervasive Comput. 2014, 13, 13–17. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGinnis, R.S.; McGinnis, E.W. Advancing Digital Medicine with Wearables in the Wild. Sensors 2022, 22, 4576. https://doi.org/10.3390/s22124576
McGinnis RS, McGinnis EW. Advancing Digital Medicine with Wearables in the Wild. Sensors. 2022; 22(12):4576. https://doi.org/10.3390/s22124576
Chicago/Turabian StyleMcGinnis, Ryan S., and Ellen W. McGinnis. 2022. "Advancing Digital Medicine with Wearables in the Wild" Sensors 22, no. 12: 4576. https://doi.org/10.3390/s22124576
APA StyleMcGinnis, R. S., & McGinnis, E. W. (2022). Advancing Digital Medicine with Wearables in the Wild. Sensors, 22(12), 4576. https://doi.org/10.3390/s22124576