Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods for Reducing Heat Stress
2.1. Shading Systems
2.1.1. Shade for Outside Lots
2.1.2. Shade for Dairy Barns
2.2. Roof Insulation
2.3. Air Cooling Systems
2.3.1. Air Conditioning and Zone Cooling
2.3.2. Foggers and Misters
2.3.3. Evaporative Cooling Pads
3. Methods for Enhancing Cow Heat Losses
3.1. Air Movement
3.1.1. Panel or Basket Fans
3.1.2. Big Ceiling Fans
3.1.3. Tunnel Ventilation
3.1.4. Low-Profile, Cross-Ventilated Barns
3.2. Sprinklers
3.3. Conductive Cooling
3.3.1. Bedding
3.3.2. Water-Cooled Heat Exchangers
4. Discussion
5. Conclusions and Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- DeShazer, J.A.; Hahn, G.L.; Xin, H. Basic principles of the thermal environment and livestock energetics. In Livestock Energetics and Thermal Environmental Management; DeShazer, J.A., Ed.; American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA, 2009; pp. 1–22. [Google Scholar]
- Smith, J.F.; Harner, J.P. Strategies to reduce the impact of heat and cold stress in dairy cattle facilities. In Environmental Physiology of Livestock; Collier, R.J., Collier, J.L., Eds.; Wiley-Blackwell: Chichester, UK, 2012; pp. 267–288. [Google Scholar]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati; Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Monteiro, A.P.A.; Tao, S.; Thompson, I.M.; Dahl, G.E. Effect of heat stress during late gestation on immune function and growth performance of calves: Isolation of altered colostral and calf factors. J. Dairy Sci. 2014, 97, 6426–6439. [Google Scholar] [CrossRef] [PubMed]
- Berman, A.; Folman, Y.; Kaim, M.; Mamen, M.; Herz, Z.; Wolfenson, D.; Arieli, A.; Graber, Y. Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate. J. Dairy Sci. 1985, 68, 1488–1495. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by us livestock industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed]
- House, H.K. Dairy Housing—Ventilation Options for Free Stall Barns. Available online: http://www.omafra.gov.on.ca/english/engineer/facts/15-017.htm (accessed on 6 May 2016).
- Ominski, K.H.; Kennedy, A.D.; Wittenberg, K.M.; Moshtaghi Nia, S.A. Physiological and production responses to feeding schedule in lactating dairy cows exposed to short-term, moderate heat stress. J. Dairy Sci. 2002, 85, 730–737. [Google Scholar] [CrossRef]
- Beede, D.K.; Collier, R.J. Potential nutritional strategies for intensively managed cattle during thermal stress. J. Anim. Sci. 1986, 62, 543–554. [Google Scholar] [CrossRef]
- OURANOS. Summary of the Synthesis on Climate Change Knowledge in Québec; OURANOS: Montreal, QC, Canada, 2015; pp. 1–13. [Google Scholar]
- Collier, R.J.; Dahl, G.E.; VanBaale, M.J. Major advances associated with environmental effects on dairy cattle. J. Dairy Sci. 2006, 89, 1244–1253. [Google Scholar] [CrossRef]
- Segnalini, M.; Bernabucci, U.; Vitali, A.; Nardone, A.; Lacetera, N. Temperature humidity index scenarios in the mediterranean basin. Int. J. Biometeorol. 2013, 57, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Gaughan, J.B.; Mader, T.L.; Gebremedhin, K.G. Rethinking heat index tools for livestock. In Environmental Physiology of Livestock; Collier, R.J., Collier, J.L., Eds.; John Wiley & Sons, Inc.: Chichester, UK, 2012; pp. 243–265. [Google Scholar]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Pennington, J.A.; VanDevender, K. Heat Stress in Dairy Cattle. Available online: http://articles.extension.org/pages/11047/heat-stress-in-dairy-cattle (accessed on 18 May 2016).
- Bond, T.E.; Kelly, C.E. The globe thermometer in agricultural research. Agric. Eng. 1955, 36, 251–255. [Google Scholar]
- Blackshaw, J.K.; Blackshaw, A.W. Heat-stress in cattle and the effect of shade on production and behavior. Aust. J. Exp. Agric. 1994, 34, 285–295. [Google Scholar] [CrossRef]
- Armstrong, D.V. Heat stress interaction with shade and cooling. J. Dairy Sci. 1994, 77, 2044–2050. [Google Scholar] [CrossRef]
- Shearer, J.K.; Bray, R.A.; Bucklin, R.A. The Management of Heat Stress in Dairy Cattle: What We Have Learned in Florida. In Proc. Feed and Nutrional Management Cow College; Virginia Tech: Manassas, VA, USA, 1999. [Google Scholar]
- Valtorta, S.E.; Leva, P.E.; Gallardo, M.R. Evaluation of different shades to improve dairy cattle well-being in Argentina. Int. J. Biometeorol. 1997, 41, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Eley, R.M.; Sharma, A.K.; Pereira, R.M.; Buffington, D.E. Shade management in subtropical environment for milk yield and composition in Holstein and Jersey cows. J. Dairy Sci. 1981, 64, 844–849. [Google Scholar] [CrossRef]
- Muller, C.J.C.; Botha, J.A.; Smith, W.A. Effect of shade on various parameters of Friesian cows in a Mediterranean climate in South Africa. 1. Feed and water intake, milk production and milk composition. S. Afr. J. Anim. Sci. 1994, 24, 49–55. [Google Scholar]
- Roman-Ponce, H.; Thatcher, W.W.; Buffington, D.E.; Wilcox, C.J.; Van Horn, H.H. Physiological and production responses of dairy cattle to a shade structure in a subtropical environment. J. Dairy Sci. 1977, 60, 424–430. [Google Scholar] [CrossRef]
- Schütz, K.E.; Rogers, A.R.; Cox, N.R.; Tucker, C.B. Dairy cows prefer shade that offers greater protection against solar radiation in summer: Shade use, behaviour, and body temperature. Appl. Anim. Behav. Sci. 2009, 116, 28–34. [Google Scholar] [CrossRef]
- Schütz, K.E.; Rogers, A.R.; Cox, N.R.; Webster, J.R.; Tucker, C.B. Dairy cattle prefer shade over sprinklers: Effects on behavior and physiology. J. Dairy Sci. 2011, 94, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Schütz, K.E.; Rogers, A.R.; Poulouin, Y.A.; Cox, N.R.; Tucker, C.B. The amount of shade influences the behavior and physiology of dairy cattle. J. Dairy Sci. 2010, 93, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.D.; Roberts, N.; Bluett, S.J.; Verkerk, G.A.; Matthews, L.R. Effects of shade provision on the behaviour, body temperature and milk production of grazing dairy cows during a New Zealand summer. N. Z. J. Agric. Res. 2008, 51, 99–105. [Google Scholar] [CrossRef]
- Canton, G.H.; Buffington, D.E.; Collier, R.J. Inspired-air cooling for dairy cows. Trans. ASAE 1982, 25, 730–734. [Google Scholar] [CrossRef]
- Bucklin, R.A.; Bray, D.R.; Martin, J.G.; Carlos, L.; Carvalho, V. Environmental temperatures in Florida dairy housing. Appl. Eng. Agric. 2009, 25, 727–735. [Google Scholar] [CrossRef]
- Kendall, P.E.; Verkerk, G.A.; Webster, J.R.; Tucker, C.B. Sprinklers and shade cool cows and reduce insect-avoidance behavior in pasture-based dairy systems. J. Dairy Sci. 2007, 90, 3671–3680. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.B.; Rogers, A.R.; Schütz, K.E. Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. Appl. Anim. Behav. Sci. 2008, 109, 141–154. [Google Scholar] [CrossRef]
- Muller, C.J.C.; Botha, J.A.; Coetzer, W.A.; Smith, W.A. Effect of shade on various parameters of Friesian cows in a Mediterranean climate in South Africa. 2. Physiological responses. S. Afr. J. Anim. Sci. 1994, 24, 56–60. [Google Scholar]
- Kendall, P.E.; Nielsen, P.P.; Webster, J.R.; Verkerk, G.A.; Littlejohn, R.P.; Matthews, L.R. The effects of providing shade to lactating dairy cows in a temperate climate. Livest. Sci. 2006, 103, 148–157. [Google Scholar] [CrossRef]
- Smith, J.F.; Brouk, M.J.; Harner, J.P. Influence of Freestall Building Orientation on Comfort of Lactating Dairy Cattle during Summer Heat Stress; Kansas State University: Manhattan, KS, USA, 2001. [Google Scholar]
- Aggarwal, A.; Upadhyay, R. Shelter management for alleviation of heat stress in cows and buffaloes. In Heat Stress and Animal Productivity; Aggarwal, A., Upadhyay, R., Eds.; Springer: New Delhi, India, 2013; pp. 169–183. [Google Scholar]
- Calegari, F.; Calamari, L.; Frazzi, E. Misting and fan cooling of the rest area in a dairy barn. Int. J. Biometeorol. 2012, 56, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Menconi, M.E.; Grohmann, D. Model integrated of life-cycle costing and dynamic thermal simulation (mild) to evaluate roof insulation materials for existing livestock buildings. Energy Build. 2014, 81, 48–58. [Google Scholar] [CrossRef]
- Daniel, J.W.; Fuquay, J.W.; Brown, W.H.; Cardwell, J.T. Roof insulation in a freestall barn for lactating cows during the summer. J. Dairy Sci. 1973, 56, 303–316. [Google Scholar]
- Fuquay, J.W.; Zook, A.B.; Daniel, J.W.; Brown, W.H.; Poe, W.E. Modifications in freestall housing for dairy cows during the summer. J. Dairy Sci. 1979, 62, 577–583. [Google Scholar] [CrossRef]
- Lawrence, M.G. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–233. [Google Scholar] [CrossRef]
- Schüller, L.K.; Burfeind, O.; Heuwieser, W. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature–humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology 2014, 81, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Buffington, D.E.; Collazo-Arocho, A.; Canton, G.H.; Pitt, D.; Thatcher, W.W.; Collier, R.J. Black globe-humidity index (bghi) as comfort equation for dairy cows. Trans. ASAE 1981, 24, 711–714. [Google Scholar] [CrossRef]
- Gaughan, J.B.; Mader, T.L.; Holt, S.M.; Lisle, A. A new heat load index for feedlot cattle. J. Anim. Sci. 2008, 86, 226. [Google Scholar] [CrossRef] [PubMed]
- Wiersma, F.; Stott, G.H. Microclimate modification for hot weather stress relief of dairy cattle. Trans. ASAE 1966, 9, 309–313. [Google Scholar]
- Stott, G.H.; Wiersma, F. Short term thermal relief for improved fertility in dairy cattle during hot weather. Int. J. Biometeorol. 1976, 20, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.E.; Stone, E.J.; Frye, J.B., Jr. Effects of Hot Weather on the Productive Function of Dairy Cows; Louisiana Agricultural Experiment Station Bulletin: Baton Rouge, LA, USA, 1966. [Google Scholar]
- Thatcher, W.W. Effects of season, climate, and temperature on reproduction and lactation. J. Dairy Sci. 1974, 57, 360–368. [Google Scholar] [CrossRef]
- Thatcher, W.W.; Gwazdauskas, F.C.; Wilcox, C.J.; Toms, J.; Head, H.H.; Buffington, D.E.; Fredricksson, W.B. Milking performance and reproductive efficiency of dairy cows in an environmentally controlled structure. J. Dairy Sci. 1974, 57, 304–307. [Google Scholar] [CrossRef]
- Hahn, G.L.; Sikes, J.D.; Shanklin, M.D.; Johnson, H.D. Dairy cow responses to summer air-conditioning as evaluated by switchback experimental design. Trans. ASAE 1969, 13, 289–291. [Google Scholar]
- Kleiber, M.; Regan, W. Influence of temperature on respiration of cows. Proc. Soc. Exp. Biol. Med. 1935, 33, 10–14. [Google Scholar] [CrossRef]
- Hahn, G.L. Cooling Inspired-Air for Dairy Cattle; USDA-ARS: Columbia, MO, USA, 1962.
- Hahn, G.L.; Johnson, H.D.; Shanklin, M.D.; Kibler, H.H. Inspired-air cooling for lactating dairy cows in a hot environment. Trans. ASAE 1965, 8, 332–337. [Google Scholar] [CrossRef]
- Roussel, J.D.; Beatty, J.F. Influence of zone cooling on performance of cows lactating during stressful summer conditions. J. Dairy Sci. 1970, 53, 1085–1088. [Google Scholar] [CrossRef]
- Gomila, L.F.; Roussel, J.D.; Beatty, J.F. Effect of zone cooling on milk yield, thyroid activity and stress indicators. J. Dairy Sci. 1977, 60, 129–132. [Google Scholar] [CrossRef]
- Jones, G.M.; Stallings, C.C. Reducing Heat Stress for Dairy Cattle; Virginia Cooperative Extension: Blacksburg, VA, USA, 1999; pp. 1–6. [Google Scholar]
- Worley, J.W. Cooling Systems for Georgia Dairy Cattle; The University of Georgia, College of Agricultural and Environmental Sciences: Athens, GE, USA, 1999; pp. 1–8. [Google Scholar]
- Bucklin, R.A.; Turner, L.W.; Beede, D.K.; Bray, D.R.; Hemken, R.W. Methods to relieve heat stress for dairy cows in hot, humid environments. Appl. Eng. Agric. 1991, 7, 241–247. [Google Scholar] [CrossRef]
- Brouk, M.J.; Armstrong, D.; Smith, J.; VanBaale, M.; Bray, D.; Harner, J., III. Evaluating and Selecting Cooling Systems for Different Climates. Available online: http://articles.extension.org/pages/17586/evaluating-and-selecting-cooling-systems-for-different-climates (accessed on 31 May 2016).
- Anderson, S.D.; Bradford, B.J.; Harner, J.P.; Tucker, C.B.; Choi, C.Y.; Allen, J.D.; Hall, L.W.; Rungruang, S.; Collier, R.J.; Smith, J.F. Effects of adjustable and stationary fans with misters on core body temperature and lying behavior of lactating dairy cows in a semiarid climate. J. Dairy Sci. 2013, 96, 4738–4750. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, X.A.; Smith, J.F.; Villar, F.; Hall, L.; Allen, J.; Oddy, A.; al-Haddad, A.; Lyle, P.; Collier, R.J. A comparison of 2 evaporative cooling systems on a commercial dairy farm in Saudi Arabia. J. Dairy Sci. 2015, 98, 8710–8722. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.P.; Boland, M.P.; Kopel, E.; Armstrong, D.; Munyakazi, L.; Godke, R.A.; Ingraham, R.H. Evaluating two different evaporative cooling management systems for dairy cows in a hot, dry climate. J. Dairy Sci. 1992, 75, 1052–1059. [Google Scholar] [CrossRef]
- Schultz, T.A.; Morrison, S.R. Manger misting improves dairy cows’ appetite. Calif. Agric. 1987, 41, 12–13. [Google Scholar]
- Brouk, M.J.; Harner, J.P.; Smith, J.F.; Hammond, A.K.; Miller, W.F.; Park, A.F. Effect of soaking and misting on respiration rate, body surface temperature, and body temperature of heat stress dairy cattle. In KSU Dairy Day Report of Progress; Kansas State University: Manhattan, KS, USA, 2003; Volume 919. [Google Scholar]
- Boonsanit, D.; Chanpongsang, S.; Chaiyabutr, N. Effects of supplemental recombinant bovine somatotropin and mist-fan cooling on the renal tubular handling of sodium in different stages of lactation in crossbred Holstein cattle. Res. Vet. Sci. 2012, 93, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Calegari, F.; Calamari, L.; Frazzi, E. Cooling systems of the resting area in free stall dairy barn. Int. J. Biometeorol. 2016, 60, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.C.; Huber, J.T.; Chen, K.H.; Simas, J.M.; Wu, Z. Effects of ruminally inert fat and evaporative cooling on dairy cows in hot environmental temperatures. J. Dairy Sci. 1997, 80, 1172–1178. [Google Scholar] [CrossRef]
- Correa-Calderon, A.; Armstrong, D.; Ray, D.; DeNise, S.; Enns, M.; Howison, C. Thermoregulatory responses of Holstein and Brown Swiss heat-stressed dairy cows to two different cooling systems. Int. J. Biometeorol. 2004, 48, 142–148. [Google Scholar] [PubMed]
- Lin, J.C.; Moss, B.R.; Koon, J.L.; Flood, C.A.; Smith, R.C., III; Cummins, K.A.; Coleman, D.A. Comparison of various fan, sprinkler, and mister systems in reducing heat stress in dairy cows. Appl. Eng. Agric. 1998, 14, 177–182. [Google Scholar] [CrossRef]
- Takamitsu, A.; Takahashi, S.; Kurihara, M.; Kume, S. Effect of an evaporative cooling procedure on the physiological responses of lactating dairy cows in a hot, humid climate. Jpn. J. Zootech. Sci. 1987, 58, 790–796. [Google Scholar]
- Tarazón-Herrera, M.; Huber, J.T.; Santos, J.; Mena, H.; Nusso, L.; Nussio, C. Effects of bovine somatotropin and evaporative cooling plus shade on lactation performance of cows during summer heat stress. J. Dairy Sci. 1999, 82, 2352–2357. [Google Scholar] [CrossRef]
- Frazzi, E.; Calamari, L.; Calegari, F.; Stefanini, L. Behavior of dairy cows in response to different barn cooling systems. Trans. ASAE 2000, 43, 387–394. [Google Scholar] [CrossRef]
- Frazzi, E.; Calamari, L.; Calegari, F. Productive response of dairy cows to different barn cooling systems. Trans. ASAE 2002, 45, 395–405. [Google Scholar] [CrossRef]
- Ward, D. Tunnel Ventilation in Livestock Barns—With and Without Evaporative Cooling. Available online: http://www.omafra.gov.on.ca/english/engineer/facts/13-073.htm (accessed on 6 May 2016).
- Brown, W.H.; Fuquay, J.W.; McGee, W.H.; Iyengar, S.S. Evaporative cooling for Mississippi dairy cows. Trans. ASAE 1974, 17, 513–515. [Google Scholar] [CrossRef]
- Chaiyabutr, N.; Chanpongsang, S.; Suadsong, S. Effects of evaporative cooling on the regulation of body water and milk production in crossbred Holstein cattle in a tropical environment. Int. J. Biometeorol. 2008, 52, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Huber, J.T.; Theurer, C.B.; Armstrong, D.V.; Wanderley, R.C.; Simas, J.M.; Chan, S.C.; Sullivan, J.L. Effect of protein quality and evaporative cooling on lactational performance of Holstein cows in hot weather. J. Dairy Sci. 1993, 76, 819–825. [Google Scholar] [CrossRef]
- Smith, T.R.; Chapa, A.; Willard, S.; Herndon, C., Jr.; Williams, R.J.; Crouch, J.; Riley, T.; Pogue, D. Evaporative tunnel cooling of dairy cows in the Southeast. II: Impact on lactation performance. J. Dairy Sci. 2006, 89, 3915–3923. [Google Scholar] [CrossRef]
- Smith, T.R.; Chapa, A.; Willard, S.; Herndon, C., Jr.; Williams, R.J.; Crouch, J.; Riley, T.; Pogue, D. Evaporative tunnel cooling of dairy cows in the Southeast. I: Effect on body temperature and respiration rate. J. Dairy Sci. 2006, 89, 3904–3914. [Google Scholar] [CrossRef]
- Smith, J.F.; Bradford, B.J.; Harner, J.P.; Potts, J.C.; Allen, J.D.; Overton, M.W.; Ortiz, X.A.; Collier, R.J. Short communication: Effect of cross ventilation with or without evaporative pads on core body temperature and resting time of lactating cows. J. Dairy Sci. 2016, 99, 1495–1500. [Google Scholar] [CrossRef] [PubMed]
- Shiao, T.F.; Chen, J.C.; Yang, D.W.; Lee, S.N.; Lee, C.F.; Cheng, W.T.K. Feasibility assessment of a tunnel-ventilated, water-padded barn on alleviation of heat stress for lactating holstein cows in a humid area. J. Dairy Sci. 2011, 94, 5393–5404. [Google Scholar] [CrossRef] [PubMed]
- Atkins, I.; Choi, C.; Holmes, B. Dairy Cooling in Humid Continental Climates. Available online: http://www.schaeferventilation.com/media/1703/dairy-cooling-in-humid-continental-climates_2816.pdf (accessed on 3 March 2017).
- Holmes, B.; Cook, N.B.; Funk, T.; Graves, R.; Kammel, D.W.; Reinemann, D.J.; Zulovich, J.M. Dairy Freestall Housing and Equipment, 8th ed.; MidWest Plan Service: Ames, IA, USA, 2013. [Google Scholar]
- Folman, Y.; Berman, A.; Herz, Z.; Kaim, M.; Rosenberg, M.; Mamen, M.; Gordin, S. Milk yield and fertility of high-yielding dairy cows in a sub-tropical climate during summer and winter. J. Dairy Res. 1979, 46, 411–425. [Google Scholar] [CrossRef]
- Calegari, F.; Calamari, L.; Frazzi, E. Fan cooling of the resting area in a free stalls dairy barn. Int. J. Biometeorol. 2014, 58, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Kammel, D.W.; Raabe, M.E.; Kappelman, J.J. Design of high volume low speed fan supplemental cooling system in dairy freestall barns. In Proceedings of the Fifth International Dairy Housing Conference (ASAE), Fort Worth, TX, USA, 29–31 January 2003; pp. 243–254. [Google Scholar]
- Kuczynski, T.; Blanes-Vidal, V.; Li, B.M.; Gates, R.S.; Nääs, I.A.; Moura, D.J.; Berckmans, D.; Banhazi, T.M. Impact of global climate change on the health, welfare and productivity of intensively housed livestock. Int. J. Agric. Biol. Eng. 2011, 4, 1–22. [Google Scholar]
- Worley, J.W.; Bernard, J.K. Comparison of high volume low speed (HVLS) vs. conventional fans in a free stall dairy in a hot humid climate. In Proceedings of the 2006 ASABE Annual International Meeting, Portland, OR, USA, 9–12 July 2006. [Google Scholar]
- Meyer, M.J.; Smith, J.F.; Harner, J.P.; Shirley, J.E.; Titgemeyer, E.C.; Brouk, M.J. Performance of lactating dairy cattle in three different cooling systems. Appl. Eng. Agric. 2002, 18, 341–345. [Google Scholar] [CrossRef]
- Naud, D.; Leblanc, R.; Dubreuil, L. La Ventilation Longitudinale dans Les étables Laitières. Available online: https://www.agrireseau.net/banqueplans/feuillets/feuillet%2020913.pdf (accessed on 6 May 2016).
- Díaz-Royón, F.; Endres, M.I.; García, A.D. Cross-Ventilated Barns for Dairy Cows: New Building Design with Cow Comfort in Mind. Available online: http://articles.extension.org/pages/68439/cross-ventilated-barns-for-dairy-cows:-new-building-design-with-cow-comfort-in-mind (accessed on 30 June 2016).
- Lobeck, K.M.; Endres, M.I.; Shane, E.M.; Godden, S.M.; Fetrow, J. Animal welfare in cross-ventilated, compost-bedded pack, and naturally ventilated dairy barns in the upper Midwest. J. Dairy Sci. 2011, 94, 5469–5479. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.F.; Harner, J.P. Comprehensive Evaluation of a Low-Profile Cross-Ventilated Free Stall Barn. Available online: http://articles.extension.org/pages/11046/comprehensive-evaluation-of-a-low-profile-cross-ventilated-free-stall-barn (accessed on 15 July 2016).
- House, H.K. Low Profile Cross Ventilation Barns. Available online: http://www.omafra.gov.on.ca/english/livestock/dairy/facts/lpbarns.htm (accessed on 26 July 2016).
- Seath, D.M.; Miller, G.D. Effects of shade and sprinkling with water on summer comfort of Jersey cows. J. Dairy Sci. 1947, 30, 255–261. [Google Scholar] [CrossRef]
- Seath, D.M.; Miller, G.D. Effect of water sprinkling with and without air movement on cooling dairy cows. J. Dairy Sci. 1948, 31, 361–366. [Google Scholar] [CrossRef]
- Igono, M.O.; Steevens, B.J.; Shanklin, M.D.; Johnson, H.D. Spray cooling effects on milk production, milk, and rectal temperatures of cows during a moderate temperate summer season. J. Dairy Sci. 1985, 68, 979–985. [Google Scholar] [CrossRef]
- Chen, J.M.; Schütz, K.E.; Tucker, C.B. Cooling cows efficiently with water spray: Behavioral, physiological, and production responses to sprinklers at the feed bunk. J. Dairy Sci. 2016, 99, 4607–4618. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Schütz, K.E.; Tucker, C.B. Cooling cows efficiently with sprinklers: Physiological responses to water spray. J. Dairy Sci. 2015, 98, 6925–6938. [Google Scholar] [CrossRef] [PubMed]
- Flamenbaum, I.; Wolfenson, D.; Mamen, M.; Berman, A. Cooling dairy cattle by a combination of sprinkling and forced ventilation and its implementation in the shelter system. J. Dairy Sci. 1986, 69, 3140–3147. [Google Scholar] [CrossRef]
- Igono, M.O.; Johnson, H.D.; Steevens, B.J.; Krause, G.F.; Shanklin, M.D. Physiological, productive, and economic benefits of shade, spray, and fan system versus shade for Holstein cows during summer heat. J. Dairy Sci. 1987, 70, 1069–1079. [Google Scholar] [CrossRef]
- Strickland, J.T.; Bucklin, R.A.; Nordstedt, R.A.; Beede, D.K.; Bray, D.R. Sprinkler and fan cooling system for dairy cows in hot, humid climates. Appl. Eng. Agric. 1989, 5, 231–236. [Google Scholar] [CrossRef]
- Her, E.; Wolfenson, D.; Flamenbaum, I.; Folman, Y.; Kaim, M.; Berman, A. Thermal, productive, and reproductive responses of high yielding cows exposed to short-term cooling in summer. J. Dairy Sci. 1988, 71, 1085–1092. [Google Scholar] [CrossRef]
- Valtorta, S.E.; Gallardo, M.R. Evaporative cooling for Holstein dairy cows under grazing conditions. Int. J. Biometeorol. 2004, 48, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Keister, Z.O.; Moss, K.D.; Zhang, H.M.; Teegerstrom, T.; Edling, R.A.; Collier, R.J.; Ax, R.L. Physiological responses in thermal stressed Jersey cows subjected to different management strategies. J. Dairy Sci. 2002, 85, 3217–3224. [Google Scholar] [CrossRef]
- Karimi, M.T.; Ghorbani, G.R.; Kargar, S.; Drackley, J.K. Late-gestation heat stress abatement on performance and behavior of Holstein dairy cows. J. Dairy Sci. 2015, 98, 6865–6875. [Google Scholar] [CrossRef] [PubMed]
- Hillman, P.E.; Gebremedhin, K.G.; Parkhurst, A.; Fuquay, J.W.; Willard, S. Evaporative and Convective Cooling of Cows in a Hot and Humid Environment. In Proceedings of the Livestock Environment VI, Louisville, KY, USA, 21–23 May 2001; Stowell, R., Bucklin, R., Botcher, R.W., Eds.; American Society of Agricultural Engineers (ASAE): Louisville, KY, USA, 2001. [Google Scholar]
- Turner, L.W.; Chastain, J.P.; Hemken, R.W.; Gates, R.S.; Crist, W.L. Reducing heat stress in dairy cows through sprinkler and fan cooling. Appl. Eng. Agric. 1992, 8, 251–256. [Google Scholar] [CrossRef]
- Hansen, P.J.; Dikmen, S.; Sakatani, M.; Dahl, G.E. Cooling Strategies during Heat Stress. Available online: http://articles.extension.org/pages/63354/cooling-strategies-during-heat-stress (accessed on 5 May 2016).
- Gebremedhin, K.G.; Wu, B.; Perano, K. Modeling conductive cooling for thermally stressed dairy cows. J. Therm. Biol. 2016, 56, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Hall, L.W.; Ortiz, X.A. Facility Modifications to Reduce Heat Stress; USDA National Institute of Food and Agriculture: Okeechobee, FL, USA, 2013; pp. 12–23.
- Cummins, K. Bedding plays role in heat abatement. Dairy Herd Manag. 1998, 35, 20. [Google Scholar]
- Radoń, J.; Bieda, W.; Lendelová, J.; Pogran, Š. Computational model of heat exchange between dairy cow and bedding. Comput. Electron. Agric. 2014, 107, 29–37. [Google Scholar] [CrossRef]
- Ortiz, X.A.; Smith, J.F.; Rojano, F.; Choi, C.Y.; Bruer, J.; Steele, T.; Schuring, N.; Allen, J.; Collier, R.J. Evaluation of conductive cooling of lactating dairy cows under controlled environmental conditions. J. Dairy Sci. 2015, 98, 1759–1771. [Google Scholar] [CrossRef] [PubMed]
- Bastian, K.R.; Gebremedhin, K.G.; Scott, N.R. Finite difference model to determine conduction heat loss to a water-filled mattress for dairy cows. Trans. ASAE 2003, 46, 773–780. [Google Scholar] [CrossRef]
- Rojano, F.; Mondaca, M.; Choi, C.Y. Feasibility of a dual cooling system for dairy cows in Arizona. In Proceedings of the 2011 ASABE Annual International Meeting (ASABE), Louisville, KY, USA, 7–10 August 2011. [Google Scholar]
- Mondaca, M.; Rojano, F.; Choi, C.Y.; Gebremedhin, K.G. A conjugate heat and mass transfer model to evaluate the efficiency of conductive cooling for dairy cattle. Trans. ASAE 2013, 56, 1471–1482. [Google Scholar]
- Perano, K.M.; Usack, J.G.; Angenent, L.T.; Gebremedhin, K.G. Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling. J. Dairy Sci. 2015, 98, 5252–5261. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, U.; Christiaens, J.P.A. Cooling in animal houses. In 2nd Report of Working Group on Climatization of Animal Houses; CIGR, IWONL, Eds.; Centre for Climatization of Animal Houses—Advisory Services, Faculty of Agricultural Sciences, State University of Ghent: Gent, Belgium, 1992; pp. 82–97. [Google Scholar]
- Atkins, I.; Choi, C.; Bucklin, R.A. Dairy Cooling in Humid Subtropical Climates. Available online: http://www.progressivedairy.com/topics/barns-equipment/dairy-cooling-in-humid-subtropical-climates (accessed on 9 June 2016).
- Fulwider, W.K.; Grandin, T.; Garrick, D.J.; Engle, T.E.; Lamm, W.D.; Dalsted, N.L.; Rollin, B.E. Influence of free-stall base on tarsal joint lesions and hygiene in dairy cows. J. Dairy Sci. 2007, 90, 3559–3566. [Google Scholar] [CrossRef] [PubMed]
Reference | Location | Breed | System | Tdb | RH 1 | Tdp 2 | WS | Tbg | THI 3 | BGHI 4 | HLI 5 | BT 6 | RR | MY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | (%) | (°C) | (m∙s−1) | (°C) | (°C) | (Breaths min−1) | (kg∙day−1) | |||||||
Collier et al. [24] | Florida, US | Holstein, Jersey | NS | 39.6 | 115 | |||||||||
S | 38.7 | 79 | ||||||||||||
Muller et al. [25] | South Africa | Friesian | NS | 19.0 | ||||||||||
S | 20.1 | |||||||||||||
Roman-Ponce et al. [26] | Florida, US | Holstein, Jersey, Guernsey, Brown Swiss | NS | 28 | 78 | 24 | 2 | 37 | 79 | 87 | 96 | 39.4 | 82 | 15.0 |
S | 28 | 79 | 24 | 2 | 28 | 79 | 78 | 83 | 38.9 | 54 | 16.6 | |||
Schütz et al. [27] | New Zealand | Holstein-Friesian | NS | 20 | 58 | 11 | 11 | 24 | 65 | 70 | 62 | |||
S | 20 | 64 | 13 | 22 | 66 | 68 | ||||||||
Schütz et al. [28] | New Zealand | Holstein-Friesian | NS | 27 | 42 | 13 | 7 | 29 | 73 | 75 | 74 | |||
S | 25 | 49 | 14 | 26 | 71 | 72 | ||||||||
Schütz et al. [29] | New Zealand | Holstein-Friesian | NS | 22 | 59 | 14 | 6 | 30 | 69 | 76 | 78 | 38.5 | 62 | 18.8 |
S | 23 | 61 | 15 | 24 | 69 | 71 | 38.4 | 54 | 18.4 | |||||
Fisher et al. [30] | New Zealand | Holstein-Friesian | NS | 18 | 80 | 14 | 21 | 63 | 68 | 39.0 | 13.9 | |||
S | 19 | 77 | 15 | 19 | 64 | 66 | 38.9 | 14.3 | ||||||
Kendall et al. [33] | New Zealand | Holstein-Friesian | NS | 38.9 | 78 | 13.2 | ||||||||
S | 38.6 | 54 | 14.0 | |||||||||||
Tucker et al. [34] | New Zealand | Holstein-Friesian | NS | 37.9 | ||||||||||
S | 37.7 | |||||||||||||
Muller et al. [35] | South Africa | Friesian | NS | 38.9 | 78 | |||||||||
S | 38.6 | 64 | ||||||||||||
Kendall et al. [36] | New Zealand | Holstein-Friesian | NS | 38.9 | 17.2 | |||||||||
S | 38.6 | 17.7 |
Reference | Location | System | Tdb | RH | Tdp 1 | Tbg | THI 2 | BGHI 3 | DMI | MY |
---|---|---|---|---|---|---|---|---|---|---|
(°C) | (%) | (°C) | (°C) | (kg∙day−1) | (kg∙day−1) | |||||
Daniel et al. [41] | Mississippi, US | NI | 18.2 | 17.9 | ||||||
I | 18.4 | 18.9 | ||||||||
Fuquay et al. [42] | Mississippi, US | NI | 31.7 | 56.4 | 22.0 | 32.8 | 81.6 | 82.2 | 24.1 | |
I | 30.5 | 58.2 | 21.4 | 30.8 | 80.3 | 80.0 | 24.3 |
Reference | Location | Breed | System | Tdb | RH | THI 1 |
---|---|---|---|---|---|---|
(°C) | (%) | |||||
Bucklin et al. [32] | Florida, US | Holstein | Outside | 27.7 | 70.0 | 77.9 |
Air-conditioned barn | 22.0 | 85.0 | 70.5 | |||
Hahn et al. [52]—Year 1 | Missouri, US | Holstein | Dry lot | 25.9 | 66.9 | 74.9 |
Air-conditioned barn | 23.4 | 65.2 | 71.0 | |||
Hahn et al. [52]—Year 2 | Missouri, US | Holstein | Dry lot | 23.4 | 73.8 | 71.8 |
Air-conditioned barn | 23.2 | 67.0 | 70.9 |
Reference | Location | Breed | System | Tdb | RH | THI 1 | RT | RR | MY |
---|---|---|---|---|---|---|---|---|---|
(°C) | (%) | (°C) | (Breaths min−1) | (kg∙day−1) | |||||
Canton et al. [31] | Florida, US | Holstein-Friesian | S | 38.9 | 77 | ||||
S + ZC | 38.6 | 62 | |||||||
Fuquay et al. [42]—Year 1 | Mississippi, US | Unknown | S | 31.7 | 56.4 | 81.6 | |||
S + ZC | 26.9 | 71.1 | 76.9 | ||||||
Fuquay et al. [42]—Year 2 | Mississippi, US | Unknown | S | 29.8 | 54.5 | 78.7 | 38.8 | 78 | |
S + ZC | 26.5 | 65.2 | 75.5 | 38.7 | 71 | ||||
Roussel and Beatty [56] | Louisiana, US | Holstein, Jersey, Guernsey | S | 40.0 | 87 | 17.3 | |||
S + ZC | 39.4 | 82 | 20.6 | ||||||
Gomila et al. [57] | Louisiana, US | Holstein, Guernsey | S | 39.1 | 77 | 19.7 | |||
S + ZC | 38.9 | 64 | 21.0 |
System | Tdb | RH | THI 1 |
---|---|---|---|
(°C) | (%) | ||
Outside | 27.5 | 84 | 79.4 |
Tunnel barn with low-pressure feed faced sprinklers | 27.8 | 89 | 80.6 |
Tunnel barn with high-pressure foggers and low-pressure feed faced sprinklers | 25.7 | 99 | 78.1 |
Reference | Location | Breed | System 1 | Tdb | RH | THI 2 | BT 3 | RR | DMI | MY |
---|---|---|---|---|---|---|---|---|---|---|
(°C) | (%) | (°C) | (Breaths min−1) | (kg∙day−1) | (kg∙day−1) | |||||
Brouk et al. [66] | Kansas, US | Holstein | UB | 33.3 | 36.0 | 80.0 | 40.2 | 115 | ||
UB + M + F | 24.7 | 85.5 | 74.8 | 39.1 | 67 | |||||
Boonsanit et al. [67] | Thailand | Crossbred Holstein | OB | 31.0 | 70.1 | 82.8 | 39.4 | 70 | ||
OB + M + F | 29.2 | 78.4 | 81.4 | 38.9 | 58 | |||||
Calegari et al. [68] | Italy | Friesian | OB + F | 60 | 29.8 | |||||
OB + M + F | 56 | 30.8 | ||||||||
Correa-Calderon et al. [70] | Arizona, US | Holstein | S | 39.7 | 87 | |||||
S + M + F | 38.8 | 50 | ||||||||
Correa-Calderon et al. [70] | Arizona, US | Brown Swiss | S | 39.2 | 79 | |||||
S + M + F | 38.8 | 52 | ||||||||
Lin et al. [71]—Year 1 | Alabama, US | Holstein | OB + F | 27.9 | 68.3 | 78.0 | 66 | 17.1 | 22.4 | |
OB + M + F | 25.9 | 81.0 | 76.5 | 57 | 18.5 | 23.0 | ||||
Lin et al. [71]—Year 2 | Alabama, US | Holstein | OB + F | 31.5 | 69.5 | 83.6 | 77 | 17.5 | 21.0 | |
OB + M + F | 26.6 | 88.5 | 78.5 | 66 | 19.6 | 24.2 | ||||
Takamitsu et al. [72]—Test 1 | Japan | Holstein | OB | 40.1 | 69 | 8.7 | 18.4 | |||
OB + M + F | 39.3 | 53 | 9.4 | 20.3 | ||||||
Takamitsu et al. [72]—Test 2 | Japan | Holstein | OB | 39.8 | 69 | 8.5 | 18.5 | |||
OB + M + F | 38.8 | 54 | 9.1 | 19.6 | ||||||
Tarazón-Herrera et al. [73] | Arizona, US | Holstein | S | 38.0 | 26.1 | 83.2 | 39.5 | 84 | 23.4 | 27.7 |
S + M + F | 32.3 | 36.6 | 78.9 | 38.7 | 67 | 23.4 | 29.0 | |||
Frazzi et al. [74] | Italy | Friesian | OB | 39.5 | 94 | 29.0 | ||||
OB + M + F | 38.6 | 70 | 29.4 | |||||||
Frazzi et al. [75] | Italy | Friesian | OB | 21.8 | 30.6 | |||||
OB + M + F | 22.1 | 34.8 |
Reference | Location | Breed | System 1 | Tdb | RH | THI 2 | BT 3 | RR | DMI | MY |
---|---|---|---|---|---|---|---|---|---|---|
(°C) | (%) | (°C) | (Breaths min−1) | (kg∙day−1) | (kg∙day−1) | |||||
Brown et al. [77]—Year 1 | Mississippi, US | Unknown | OB + F | 40.1 | 95 | 18.9 | ||||
OB + P | 39.8 | 91 | 20.5 | |||||||
Brown et al. [77]—Year 2 | Mississippi, US | Unknown | OB + F | 39.1 | 78 | 24.9 | ||||
OB + P | 39.0 | 74 | 25.4 | |||||||
Brown et al. [77]—Year 3 | Mississippi, US | Unknown | OB + F | 38.9 | 65 | 22.5 | ||||
OB + P | 38.8 | 64 | 21.4 | |||||||
Chaiyabutr et al. [78] | Thailand | Crossbred Holstein | OB | 33.4 | 61 | 84.8 | 39.7 | 86 | 10.8 | |
TVB + P | 27.8 | 84 | 79.9 | 38.7 | 64 | 16.1 | ||||
Chen et al. [79] | Arizona, US | Holstein | S | 39.1 | 82 | 27.5 | ||||
S + P | 38.6 | 64 | 30.0 | |||||||
Smith et al. [80,81]—Year 1 | Mississippi, US | Holstein | OB + K + F | 33.1 | 64.4 | 85.0 | 39.0 | 68 | 14.8 | 22.5 |
TVB + P | 30.1 | 91.1 | 84.8 | 38.6 | 55 | 16.5 | 25.1 | |||
Smith et al. [80,81]—Year 2 | Mississippi, US | Holstein | OB + F | 24.9 | 71.3 | 73.8 | 39.3 | 71 | 14.2 | 26.7 |
TVB + P | 22.6 | 93.5 | 72.2 | 38.7 | 55 | 16.2 | 29.5 | |||
Smith et al. [82] | Minnesota, US | Holstein | O | 25.4 | 64.3 | 73.8 | ||||
CVB | 25.4 | 62.7 | 73.7 | 38.7 | ||||||
CVB + P | 21.9 | 86.0 | 70.4 | 38.6 | ||||||
Shiao et al. [83] | Taiwan | Holstein | OB + K + F | 30.9 | 75.7 | 83.7 | 38.9 | 54 | 18.5 | 24.7 |
TVB + P | 27.1 | 99.9 | 80.8 | 39.1 | 52 | 18.8 | 25.0 | |||
TVB + P + K | 27.7 | 98.8 | 81.7 | 38.9 | 56 | 18.8 | 25.4 |
Reference | Location | Breed | System 1 | BT 2 | RR | CR | DMI | MY |
---|---|---|---|---|---|---|---|---|
(°C) | (Breaths min−1) | (%) | (kg∙day−1) | (kg∙day−1) | ||||
Berman et al. [6] | Israel | Holstein | S | 73 | ||||
S + F | 59 | |||||||
Takamitsu et al. [72] | Japan | Holstein | OB | 40.1 | 69 | 8.7 | 18.4 | |
OB + F | 39.6 | 59 | 9.3 | 19.4 | ||||
Frazzi et al. [74] | Italy | Friesian | OB | 39.5 | 94 | 29.0 | ||
OB + F | 38.9 | 78 | 29.6 | |||||
Folman et al. [86] | Israel | Friesian | OB | 39.8 | 22 | 34.3 | ||
OB + F | 39.3 | 52 | 36.2 | |||||
Calegari et al. [87] | Italy | Friesian | OB + K | 38.8 | 56 | 32.1 | ||
OB + K+ F | 38.7 | 54 | 32.4 |
Reference | Location | Breed | System 1 | Tdb | RH | THI 2 | VT | RR | MY |
---|---|---|---|---|---|---|---|---|---|
(°C) | (%) | (°C) | (Breaths min−1) | (kg∙day−1) | |||||
Bucklin et al. [32] | Florida, US | Holstein | O | 33.9 | 50.0 | 83.4 | |||
OB + K + CF | 29.7 | 55.0 | 78.7 | ||||||
Worley and Bernard [90] | Georgia, US | Holstein | OB + M + F | 39.3 | |||||
OB + CF | 39.5 | ||||||||
Meyer et al. [91] | Kansas, US | Holstein | OB + K + F | 75 | 40.1 | ||||
OB + K + CF | 84 | 37.1 |
Reference | Location | Breed | System 1 | Tdb | RH | THI 2 | BT 3 | RR | DMI | MY |
---|---|---|---|---|---|---|---|---|---|---|
(°C) | (%) | (°C) | (Breaths min−1) | (kg∙day−1) | (kg∙day−1) | |||||
Bucklin et al. [32] | Florida, US | Holstein | O | 33.9 | 50 | 83.8 | ||||
OB + K + F | 29.7 | 55 | 78.6 | |||||||
TVB + K | 29.0 | 56 | 77.9 | |||||||
Kendall et al. [33] | New Zealand | Holstein-Friesian | S | 38.6 | 54 | 14.0 | ||||
S + K | 38.6 | 24 | 13.6 | |||||||
Fuquay et al. [42] | Mississippi, US | Unknown | S | 30.5 | 60.1 | 80.6 | 38.9 | 84 | ||
S + K | 29.7 | 64.0 | 80.0 | 38.8 | 82 | |||||
Brouk et al. [66] | Kansas, US | Holstein | UB | 40.2 | 115 | |||||
UB + K + F | 39.1 | 60 | ||||||||
Correa-Calderon et al. [70] | Arizona, US | Holstein | S | 39.7 | 87 | |||||
S + K + F | 39.0 | 64 | ||||||||
Correa-Calderon et al. [70] | Arizona, US | Brown Swiss | S | 39.2 | 79 | |||||
S + K + F | 38.9 | 61 | ||||||||
Lin et al. [71]—Year 1 | Alabama, US | Holstein | OB + F | 27.9 | 68.3 | 78.0 | 66 | 17.1 | 22.4 | |
OB + K + F | 25.5 | 84.3 | 76.2 | 54 | 19.0 | 25.0 | ||||
Lin et al. [71]—Year 2 | Alabama, US | Holstein | OB + F | 31.5 | 69.5 | 83.6 | 77 | 17.5 | 21.0 | |
OB + K + F | 27.5 | 93.9 | 80.7 | 58 | 20.5 | 24.0 | ||||
Frazzi et al. [75] | Italy | Italian Friesian | OB | 21.8 | 30.6 | |||||
OB + K + F | 22.7 | 33.5 | ||||||||
Seath and Miller [97] | Louisiana, US | Jersey | O | 39.3 | 83 | |||||
S | 38.8 | 58 | ||||||||
S + K | 38.7 | 41 | ||||||||
Seath and Miller [98] | Louisiana, US | Jersey | O | 39.7 | 109 | |||||
CB | 39.3 | 88 | ||||||||
CB + K | 39.0 | 77 | ||||||||
CB + F | 38.9 | 72 | ||||||||
CB + K + F | 38.7 | 74 | ||||||||
Igono et al. [99] | Missouri, US | Holstein | S | 39.1 | 23.2 | |||||
S + K | 38.8 | 23.9 | ||||||||
Chen et al. [100] | California, US | Holstein-Friesian | OB | 38.9 | 42.6 | |||||
OB + K | 38.6 | 46.1 | ||||||||
Flamenbaum et al. [102] | Israel | Holstein | OB | 38.9 | ||||||
OB + K + F | 38.2 | |||||||||
Igono et al. [103] | Missouri, US | Holstein | S | 31.0 | 43.0 | 78.5 | 39.2 | 32.8 4 | 23.3 | |
S + K + F | 30.8 | 43.6 | 78.3 | 38.8 | 35.1 4 | 25.3 | ||||
Strickland et al. [104] | Florida, US | Holstein | OB | 95 | 17.8 | 18.1 | ||||
OB + K + F | 57 | 19.1 | 20.2 | |||||||
Her et al. [105] | Israel | Holstein | OB | 39.2 | ||||||
OB + K + F | 38.6 | |||||||||
Valtorta and Gallardo [106] | Argentina | Holstein | S | 39.5 | 72 | 22.1 | ||||
S + K + F | 39.2 | 54 | 23.2 | |||||||
Keister et al. [107]—Year 1 | Arizona, US | Jersey | S | 21.8 | ||||||
S + K + F | 23.1 | |||||||||
Keister et al. [107]—Year 2 | Arizona, US | Jersey | S | 32.8 | 40.3 | 80.2 | 102 | 20.5 | ||
S + K + F | 29.1 | 59.3 | 78.5 | 80 | 22.4 | |||||
Karimi et al. [108] | Iran | Holstein | OB | 39.5 | 70 | 13.7 | 40.5 | |||
OB + K + F | 39.2 | 63 | 15.5 | 44.6 | ||||||
Hillman et al. [109] | New York, US | Holstein | UB | 40.0 | 90 | |||||
UB + K + F | 39.3 | 74 | ||||||||
Turner et al. [110] | Kentucky, US | Holstein | OB | 39.2 | 91 | 34.9 4 | 22.7 | |||
OB + K + F | 38.7 | 75 | 38.1 4 | 26.3 |
Reference | Location | Breed | System | RT | RR | DMI | MY |
---|---|---|---|---|---|---|---|
(°C) | (Breaths min−1) | (kg∙day−1) | (kg∙day−1) | ||||
Perano et al. [120] | New York, US | Holstein | Uncooled | 40.1 | 82 | 18.9 | 30.3 |
Cooled at 10 °C | 39.4 | 68 | 20.9 | 32.6 | |||
Cooled at 4.5 °C | 39.1 | 64 | 22.0 | 32.8 |
Method | Cooling System | Tdb | Tbg | RH | THI | BGHI | HLI | RT | VT | RR | CR | FI | DMI | MY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | (°C) | (%) | (°C) | (°C) | (Breaths min−1) | (%) | (kg∙day−1) | (kg∙day−1) | (kg∙day−1) | |||||
Modifying the environment to limit the degree of heat stress | Shade | 0.0 | −4.4 | 0.0 | −4.2 | −13.0 | −0.6 | −0.2 | −22 | +0.7 | ||||
Roof insulation | −1.2 | −2.0 | −1.3 | −2.2 | +0.2 | +0.6 | ||||||||
Evaporative cooling pad | −3.5 | +23.7 | −2.4 | −0.6 | 0.0 | −10 | +1.3 | +1.9 | ||||||
Fogger | −2.1 | +10.0 | −2.5 | |||||||||||
Mister-fan | −4.6 | +20.0 | −3.5 | −0.8 | −1.0 | −20 | +0.9 | +1.7 | ||||||
Enhancing heat exchange between cows and their environment | Sprinkler | −0.8 | +3.9 | −0.6 | −0.2 | −0.1 | −16 | +1.3 | ||||||
Sprinkler-fan | −2.8 | +11.1 | −2.5 | −0.5 | −1.1 | −22 | +2.8 | +1.8 | +2.5 | |||||
Tunnel ventilation (+pad) | −3.5 | +23.8 | −2.2 | −0.7 | 0.0 | −12 | +1.3 | +2.9 | ||||||
Cross ventilation (+pad) | −3.5 | +21.7 | −3.4 | |||||||||||
LVHS | −0.4 | −0.5 | −11 | +30 | +0.6 | +1.0 | ||||||||
HVLS (+sprinkler) | −4.2 | +5.0 | −4.7 | |||||||||||
Waterbeds | −0.9 | −16 | +2.6 | +2.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fournel, S.; Ouellet, V.; Charbonneau, É. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review. Animals 2017, 7, 37. https://doi.org/10.3390/ani7050037
Fournel S, Ouellet V, Charbonneau É. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review. Animals. 2017; 7(5):37. https://doi.org/10.3390/ani7050037
Chicago/Turabian StyleFournel, Sébastien, Véronique Ouellet, and Édith Charbonneau. 2017. "Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review" Animals 7, no. 5: 37. https://doi.org/10.3390/ani7050037