As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Computed tomography (CT) is widely applied in contemporary clinic. Due to the radiation risks carried by X-rays, the imaging and post-processing methods of low-dose CT (LDCT) become popular topics in academia and industrial community. Generally, LDCT presents strong noise and artifacts, while existing algorithms cannot completely overcome the blurring effects and meantime reduce the noise. The proposed method enables CT extend to independent frequency channels by wavelet transformation, then two separate networks are established for low-frequency denoising and high-frequency reconstruction. The clean signals from high-frequency channel are reconstructed through channel translation, which is essentially effective in preserving detailed structures. The public dataset from Mayo Clinic was used for model training and testing. The experiments showed that the proposed method achieves a better quantitative result (PSNR: 37.42dB, SSIM: 0.8990) and details recovery visually, which demonstrates our framework can better restore the detailed features while significantly suppressing the noise.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.