As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Causal Estimation is usually tackled as a two-step process: identification, to transform a causal query into a statistical estimand, and modelling, to compute this estimand by using data. This reliance on the derived statistical estimand makes these methods ad hoc, used to answer one and only one query. We present an alternative framework called Deep Causal Graphs: with a single model, it answers any identifiable causal query without compromising on performance, thanks to the use of Normalizing Causal Flows, and outputs complex counterfactual distributions instead of single-point estimations of their expected value. We conclude with applications of the framework to Machine Learning Explainability and Fairness.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.