As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Identifying individual salmon can be very beneficial for the aquaculture industry as it enables monitoring and analyzing fish behavior and welfare. For aquaculture researchers identifying individual salmon is imperative to their research. The current methods of individual salmon tagging and tracking rely on physical interaction with the fish. This process is inefficient and can cause physical harm and stress for the salmon. In this paper we propose FishNet, based on a deep learning technique that has been successfully used for identifying humans, to identify salmon. We create a dataset of labeled fish images and then test the performance of the FishNet architecture. Our experiments show that this architecture learns a useful representation based on images of salmon heads. Further, we show that good performance can be achieved with relatively small neural network models: FishNet achieves a false positive rate of 1% and a true positive rate of 96%.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.