As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The Deep Convolutional Neural Networks (CNNs) have obtained a great success for pattern recognition, such as recognizing the texts in images. But existing CNNs based frameworks still have several drawbacks: 1) the traditaional pooling operation may lose important feature information and is unlearnable; 2) the traditional convolution operation optimizes slowly and the hierarchical features from different layers are not fully utilized. In this work, we address these problems by developing a novel deep network model called Fully-Convolutional Intensive Feature Flow Neural Network (IntensiveNet). Specifically, we design a further dense block called intensive block to extract the feature information, where the original inputs and two dense blocks are connected tightly. To encode data appropriately, we present the concepts of dense fusion block and further dense fusion operations for our new intensive block. By adding short connections to different layers, the feature flow and coupling between layers are enhanced. We also replace the traditional convolution by depthwise separable convolution to make the operation efficient. To prevent important feature information being lost to a certain extent, we use a convolution operation with stride 2 to replace the original pooling operation in the customary transition layers. The recognition results on large-scale Chinese string and MNIST datasets show that our IntensiveNet can deliver enhanced recognition results, compared with other related deep models.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.