As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We argue that the problem of adversarial plan recognition, where the observed agent actively tries to avoid detection, should be modeled in the game theoretic framework. We define the problem as an imperfect-information extensive-form game between the observer and the observed agent. We propose a novel algorithm that approximates the optimal solution in the game using Monte-Carlo sampling. The experimental evaluation is performed on a synthetic domain inspired by a network security problem. The proposed method produces significantly better results than several simple baselines on a practically large domain.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.