As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The study compares the effectiveness of Bayesian networks versus Decision Trees for predicting access to renal transplant waiting list in a French healthcare network. The data set consisted in 809 patients starting renal replacement therapy. The data were randomly divided into a training set (90%) and a validation set (10%). Bayesian network and CART decision tree were built on the training set. Their predictive performances were compared on the validation set. The age variable was found to be the most important factor in both models. Both models were highly sensitive and specific: sensitivity 90.0% (95%CI: 76.8–100), specificity 96.7% (95%CI: 92.2–100). Moreover, the models were complementary since the Bayesian network provided a global view of the variables' associations while the decision tree was more easily interpretable by physicians. These approaches provide insights on the current care process. This knowledge could be used for optimizing the healthcare process.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.