Abstract
A theoretical study regarding the evaluation of the antioxidant character of three of the most wide-spread anthocyanidins (cyanidin, delphinidin and malvidin) was carried out at ab initio level. Different parameters (bond dissociation enthalpy, ionization potential, proton affinity, and electron transfer enthalpy) were computed for each OH group of the compounds in order to predict their antioxidant capacity. Several molecular descriptors based on frontier molecular orbital theory (hardness, electrophilicity, frontier charge density) were also calculated, as well as the atomic charges corresponding to the O atoms of the hydroxyl groups.
[1] M. Andersen, K.R. Markham, Flavonoids. Chemistry, Biochemistry and Applications (CRC Press, Boca Raton, Florida, 2006) 10.1201/9781420039443Search in Google Scholar
[2] M. de Lorgeril, P. Salen, In: M.G. Bourassa, J.-C. Tardif, (Eds.), Antioxidants and Cardiovascular disease, 2nd edition (Springer Science+Business Media, Inc., New York, 2006) Search in Google Scholar
[3] L. Packer, P. Rosen, H.J. Tritschler, G.L. King, A. Azzi, In: C.A Rice-Evans, L. Packer, (Eds.), Oxidative Stress and Disease, 2nd edition (Marcel Dekker, Inc., New York, 2003) Search in Google Scholar
[4] J.S. Wright, E.R. Johnson, G.A. DiLabio, J. Am. Chem. Soc. 123(6), 1173 (2001) http://dx.doi.org/10.1021/ja002455u10.1021/ja002455uSearch in Google Scholar PubMed
[5] M. Musialik, G. Litwinienko, Org. Lett. 7(22), 4951 (2005) http://dx.doi.org/10.1021/ol051962j10.1021/ol051962jSearch in Google Scholar PubMed
[6] A.P. Vafiadis, E.G. Bakalbassis, Chem. Phys. 316(1–3), 195 (2005) http://dx.doi.org/10.1016/j.chemphys.2005.05.01510.1016/j.chemphys.2005.05.015Search in Google Scholar
[7] E. Migliavacca, P.-A. Carrupt, B. Testa, Helv. Chim. Acta 80(5), 1613 (1997) http://dx.doi.org/10.1002/hlca.1997080051910.1002/hlca.19970800519Search in Google Scholar
[8] H.Y. Zhang, D.Z. Chen, Chin. Chem. Lett. 11(8), 727 (2000) Search in Google Scholar
[9] L.F. Wang, X.L. Wang, H.Y. Zhang, Dyes and Pigments 67, 161 (2005) http://dx.doi.org/10.1016/j.dyepig.2004.11.00710.1016/j.dyepig.2004.11.007Search in Google Scholar
[10] H.-Y. Zhang, Current Computer-Aided Drug Design 1(3), 257 (2005) http://dx.doi.org/10.2174/157340905436769110.2174/1573409054367691Search in Google Scholar
[11] M. Wolniak, I. Waver, Solid State Nuclear Magnetic Resonance 34, 44 (2008) http://dx.doi.org/10.1016/j.ssnmr.2008.06.00310.1016/j.ssnmr.2008.06.003Search in Google Scholar PubMed
[12] K. Sakata, N. Saito, T. Honda, Tetrahedron 62, 3721 (2006) http://dx.doi.org/10.1016/j.tet.2006.01.08110.1016/j.tet.2006.01.081Search in Google Scholar
[13] J.N. Woodford, Chemical Physics Letters 410, 182 (2005) http://dx.doi.org/10.1016/j.cplett.2005.05.06710.1016/j.cplett.2005.05.067Search in Google Scholar
[14] T. Borkowski, H. Szymusiak, A. Gliszczynska-Swiglo, B. Tyrakowska, Food Research International 38, 1031 (2005) http://dx.doi.org/10.1016/j.foodres.2005.02.02010.1016/j.foodres.2005.02.020Search in Google Scholar
[15] L. Estevez, N. Otero, R. A. Mosquera, J. Phys. Chem. B 114, 9706 (2010) http://dx.doi.org/10.1021/jp104126610.1021/jp1041266Search in Google Scholar PubMed
[16] R. Guzman, C. Santiago, M. Sanchez, J. Mol. Struct. 935, 110 (2009) http://dx.doi.org/10.1016/j.molstruc.2009.06.04810.1016/j.molstruc.2009.06.048Search in Google Scholar
[17] P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni, J.L. Duroux, Food Chemistry 97, 679 (2006) http://dx.doi.org/10.1016/j.foodchem.2005.05.04210.1016/j.foodchem.2005.05.042Search in Google Scholar
[18] E. Klein, V. Lukes, M. Ilcin, Chemical Physics 336, 51 (2007) http://dx.doi.org/10.1016/j.chemphys.2007.05.00710.1016/j.chemphys.2007.05.007Search in Google Scholar
[19] L.F. Wang, H.Y. Zhang, Bioorganic Chemistry 33, 108 (2005) http://dx.doi.org/10.1016/j.bioorg.2005.01.00210.1016/j.bioorg.2005.01.002Search in Google Scholar PubMed
[20] K. Sadasivam, R. Kumaresan, Computational and Theoretical Chemistry 963, 227 (2011) http://dx.doi.org/10.1016/j.comptc.2010.10.02510.1016/j.comptc.2010.10.025Search in Google Scholar
[21] E.G. Bakalbassis, A. Chatzopolou, V.S. Melissas, M. Tsimidou, M. Tsolaki, A. Vafiadis, Lipids 36, 181 (2001) http://dx.doi.org/10.1007/s11745-001-0705-910.1007/s11745-001-0705-9Search in Google Scholar PubMed
[22] B. Rojano, J. Saez, G. Schinella, J. Quijano, E. Velez, A. Gil, R. Notario, J. Mol. Struc. 877, 1 (2008) http://dx.doi.org/10.1016/j.molstruc.2007.07.01010.1016/j.molstruc.2007.07.010Search in Google Scholar
[23] H. Wang, G. Cao, R.L. Prior, J. Agric. Food Chem. 45, 304 (1997) http://dx.doi.org/10.1021/jf960421t10.1021/jf960421tSearch in Google Scholar
[24] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.03 (Gaussian, Inc., Pittsburgh PA, 2003) Search in Google Scholar
[25] J. Zhang, F. Du, B. Peng, R. Lu, H. Gao, Z. Zhou, J. Mol. Struct. (THEOCHEM) 955, 1 (2010) http://dx.doi.org/10.1016/j.theochem.2010.04.03610.1016/j.theochem.2010.04.036Search in Google Scholar
[26] E. Klein, V. Lukes, J. Mol. Struct. (THEOCHEM) 805, 153 (2007) http://dx.doi.org/10.1016/j.theochem.2006.11.00210.1016/j.theochem.2006.11.002Search in Google Scholar
[27] P.K. Chattaraj, H. Lee, R.G. Parr, J. Am. Chem. Soc. 113(5), 1855 (1991) http://dx.doi.org/10.1021/ja00005a07310.1021/ja00005a073Search in Google Scholar
[28] X.M. Duan, G.L. Song, Z.H. Li, X.J. Wang, G.H. Chen, K.N. Fan, J. Chem. Phys. 121(15), 7086 (2004) http://dx.doi.org/10.1063/1.178658210.1063/1.1786582Search in Google Scholar PubMed
© 2011 Versita Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.