Analysis, Deployment and Integration of Platforms for Fog Computing

Authors

  • Joaquín de Antueno Instituto de Investigación en Informática III LIDI, Facultad de Informática, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina https://orcid.org/0000-0003-4095-9059
  • Santiago Medina Instituto de Investigación en Informática III LIDI, Facultad de Informática, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
  • Laura De Giusti Instituto de Investigación en Informática III LIDI, Facultad de Informática, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina https://orcid.org/0000-0003-2850-801X
  • Armando De Giusti Instituto de Investigación en Informática III LIDI, Facultad de Informática, Universidad Nacional de La Plata - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina https://orcid.org/0000-0002-6459-3592

DOI:

https://doi.org/10.24215/16666038.20.e12

Keywords:

Cloud Computing, Fog Computing, Internet of Things, IoT Platforms

Abstract

In IoT applications, data capture in a sensor network can generate a large flow of information between the nodes and the cloud, affecting response times and device complexity but, above all, increasing costs. Fog computing refers to the use of pre-processing tools to improve local data management and communication with the cloud. This work presents an analysis of the features that platforms implementing fog computing solutions should have. Additionally, an experimental work integrating two specific platforms used for controlling devices in a sensor network, processing the generated data, and communicating with the cloud is presented.

Downloads

References

P. Mell and T . Grance, “ T he NIST Definition of Cloud Computing”. Special Publication 800-145, National Institute of Standards and T echnology, U.S. Department of Commerce, 2010.

F. Bonomi, R. Milito, J. Zhu and S. Addepalli, “ Fog Computing and Its Role in the Internet of T hings”, in MCC '12: Proceedings of the first edition of the MCC workshop on Mobile cloud computing. Association for Computing Machinery, New York, NY, United States, 2012.

M. Asemani, F. Jabbari, F. Abdollahei and P. Bellavista, ”A Comprehensive Fog-enabled Architecture for IoT Platforms”, High-Performance Computing and Big Data Analysis. TopHPC 2019. Communications in Computer and Information Science, vol 891. Springer, Cham, 2019.

M. Cruz, J. Rodriguez, A. K. Sangaiah, J. Al-Muhtadi and V. Korotaev, “ Performance evaluation of IoT middleware”, Journal of Network and Computer Applications, Volume 109, 2018.

“ T hingboard Open Source IoT Platform”. Available at: https://thingsboard.io/. Accessed on 2020-10-10.

T . L. Scott and A. Eleyan, “ CoAP based IoT data transfer from a Raspberry Pi to Cloud”. International Symposium on Networks, Computers and Communication (ISNCC2019), Istanbul, Turkey, pp. 1-6, 2019.

“ Mainflux Open Source IoT Platform” . Available at: https://www.mainflux.com/. Last accessed: 2020-10-10.

“ SiteWhere Open Source Internet of T hings Platform”. Available at: https://sitewhere.io/. Last accessed: 2020-10-10.

A. L. Bustamante, M. A. Patricio and J. M. Molina, “ T hinger.io: An Open Source Platform for Deploying Data Fusion Applications in IoT Environments”, Sensors 2019,19 (5), 1044, MDPI, 2019.

A. A. Rodriguez Aya, J. A. Figueredo Luna and J. A. Chica García, “ Sistema de control y telemetría de datos mediante una aplicación móvil en Android basado en IoT para el monitoreo de datos”. Espacios 39(22):30, Espacios Inc., 2018.

L. Aghenta and T . Iqbal, “ Low-Cost, Open Source IoT -Based SCADA System Design Using T hinger.IO and ESP32 T hing”, Electronics 2019, 8(8), 822, MDPI, 2019.

W. S. Aung and S. Aung Nyein Oo, “ Monitoring and Controlling Device for Smart Greenhouse by using T hinger.io IoT Server”. International Journal of Trend in Scientific Research and Development, 2019.

Dr. S. K. Selvaperumal, W. Al-Gumaei, R. Abdulla and V. T hiruchelvam, “ Integrated Wireless Monitoring System Using LoRa and Node-Red for University Building”. Journal of Computational and Theoretical Nanoscience, Volume 16, Number 8, American Scientific Publishers, 2019.

S. Sicari, A. Rizzardi and A. Coen-Porisini, “ Smart Transport and Logistics: a Node-RED implementation”, Internet Technology Letters, Volume 2, Issue 2, John Wiley & Sons, 2019.

Proyecto “Unidad Inteligente para Control de Consumo Eléctrico (UICCE)”, Convocatoria "Vinculación Tecnológica. Agregando Valor 2017", Secretaría de Políticas Universitarias (SPU). Approved and financed by SPU and UNLP, Supervision: Dra. Laura De Giusti, 2017.

M. Pi Puig, J. M. Paniego, S. Medina, S. Rodriguez Eguren, L. Libutti, J. Lanciotti, J. de Antueno, C. Estrebou, F. Chichizola and L. De Giusti, “ Intelligent Distributed System for Energy Efficient Control”, Cloud Computing and Big Data. JCC&BD 2019. Communications in Computer and Information Science, vol 1050. Springer, Cham ,

Downloads

Published

2020-10-29

How to Cite

de Antueno, J., Medina, S., De Giusti, L., & De Giusti, A. (2020). Analysis, Deployment and Integration of Platforms for Fog Computing. Journal of Computer Science and Technology, 20(2), e12. https://doi.org/10.24215/16666038.20.e12

Issue

Section

Original Articles