To profile or to marginalize - A SMEFT case study
Ilaria Brivio, Sebastian Bruggisser, Nina Elmer, Emma Geoffray, Michel Luchmann, Tilman Plehn
SciPost Phys. 16, 035 (2024) · published 29 January 2024
- doi: 10.21468/SciPostPhys.16.1.035
- Submissions/Reports
Abstract
Global SMEFT analyses have become a key interpretation framework for LHC physics, quantifying how well a large set of kinematic measurements agrees with the Standard Model. This agreement is encoded in measured Wilson coefficients and their uncertainties. A technical challenge of global analyses are correlations. We compare, for the first time, results from a profile likelihood and a Bayesian marginalization for a given data set with a comprehensive uncertainty treatment. Using the validated Bayesian framework we analyse a series of new kinematic measurements. For the updated dataset we find and explain differences between the marginalization and profile likelihood treatments.
Cited by 4
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Ilaria Brivio,
- 1 3 Sebastian Bruggisser,
- 1 Nina Elmer,
- 1 Emma Geoffray,
- 1 Michel Luchmann,
- 1 Tilman Plehn
- 1 Ruprecht-Karls-Universität Heidelberg / Heidelberg University
- 2 Universität Zürich / University of Zurich [UZH]
- 3 Uppsala universitet / Uppsala University
- Deutsche Forschungsgemeinschaft / German Research FoundationDeutsche Forschungsgemeinschaft [DFG]
- International Max Planck Research School for Precision Tests of Fundamental Symmetries
- Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung / Swiss National Science Foundation [SNF]