IoT sensors measurements of CO2 concentration on Irish peatland sites

Citation Author(s):
Nwamaka
Okafor
University College Dublin
Declan
Delaney
University College Dublin
Submitted by:
Nwamaka Okafor
Last updated:
Wed, 02/28/2024 - 13:58
DOI:
10.21227/2v9p-hf10
Data Format:
Research Article Link:
License:
0
0 ratings - Please login to submit your rating.

Abstract 

16.00

Normal
0

false
false
false

EN-GB
X-NONE
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:8.0pt;
mso-para-margin-left:0cm;
line-height:107%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"Times New Roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;
mso-ligatures:standardcontextual;
mso-fareast-language:EN-US;}

The paucity of data has long hindered the accurate modeling of CO2 concentrations within peatland regions, despite their significance as carbon reservoirs. Peatlands naturally sequester substantial carbon underground, yet disturbances, whether due to climate change or land use shifts, can trigger the release of significant amounts of carbon and other greenhouse gases, thereby disrupting the atmosphere and impacting human lives. The lack of comprehensive data has rendered it challenging to thoroughly assess the peatland regions' contribution to the net ecosystem carbon budget (NECB). To address this gap, we present a curated dataset comprising CO2 measurements obtained through IoT sensors deployed in conjunction with sophisticated instrumentation, namely eddy covariance flux towers (EC-flux towers). These towers gauge the exchange of carbon and other greenhouse gases with the atmosphere. The dataset, collected across various sensors and spanning from January 2020 to December 2021, offers a valuable resource for investigating the reliability of IoT sensors in monitoring CO2 fluxes. Moreover, the data enables the calibration of IoT sensors through modelling and training using reference monitors, facilitating more accurate and precise measurements.

 

Instructions: 

16.00

Normal
0

false
false
false

EN-GB
X-NONE
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:8.0pt;
mso-para-margin-left:0cm;
line-height:107%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"Times New Roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;
mso-ligatures:standardcontextual;
mso-fareast-language:EN-US;}

The dataset contains measurements from multiple Decentlab LP8 sensors deployed on a peatland site in Ireland. Each sensor records the following readings: 'AirHumidity (%)', 'AirTemperature (oC)', 'BarometerTemperature (oC)','BarometricPressure (pa)', 'BatteryVoltage'(v)', 'CO2Concentration (ppm)', 'CO2ConcentrationLPF (ppm)', 'CO2SensorStatus', 'CO2SensorTemperature (oC)',  'CapacitorVoltage1', 'CapacitorVoltage2', 'RawIRreading','RawIRreadingLPF'.

 

 

 

Sensors were deployed in collocation with reference monitor; Eddy Covariance flux tower which measures CO2 fluxes (ppm). Sensor measurement was sampled at 10-minute intervals and reference data was sampled at 30 minute intervals. Sensor data can be re-sampled to match reference data for effective analysis.

 

Funding Agency: 
The SmartBOG project under EPA Research Programme 2014-2020 42617/0
Grant Number: 
2014-2020 42617/0
Data Descriptor Article DOI: