@inproceedings{yang-etal-2019-sequential,
title = "{S}equential {A}ttention with {K}eyword {M}ask {M}odel for {C}ommunity-based {Q}uestion {A}nswering",
author = "Yang, Jianxin and
Rong, Wenge and
Shi, Libin and
Xiong, Zhang",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1228",
doi = "10.18653/v1/N19-1228",
pages = "2201--2211",
abstract = "In Community-based Question Answering system(CQA), Answer Selection(AS) is a critical task, which focuses on finding a suitable answer within a list of candidate answers. For neural network models, the key issue is how to model the representations of QA text pairs and calculate the interactions between them. We propose a Sequential Attention with Keyword Mask model(SAKM) for CQA to imitate human reading behavior. Question and answer text regard each other as context within keyword-mask attention when encoding the representations, and repeat multiple times(hops) in a sequential style. So the QA pairs capture features and information from both question text and answer text, interacting and improving vector representations iteratively through hops. The flexibility of the model allows to extract meaningful keywords from the sentences and enhance diverse mutual information. We perform on answer selection tasks and multi-level answer ranking tasks. Experiment results demonstrate the superiority of our proposed model on community-based QA datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2019-sequential">
<titleInfo>
<title>Sequential Attention with Keyword Mask Model for Community-based Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianxin</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenge</namePart>
<namePart type="family">Rong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Libin</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhang</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In Community-based Question Answering system(CQA), Answer Selection(AS) is a critical task, which focuses on finding a suitable answer within a list of candidate answers. For neural network models, the key issue is how to model the representations of QA text pairs and calculate the interactions between them. We propose a Sequential Attention with Keyword Mask model(SAKM) for CQA to imitate human reading behavior. Question and answer text regard each other as context within keyword-mask attention when encoding the representations, and repeat multiple times(hops) in a sequential style. So the QA pairs capture features and information from both question text and answer text, interacting and improving vector representations iteratively through hops. The flexibility of the model allows to extract meaningful keywords from the sentences and enhance diverse mutual information. We perform on answer selection tasks and multi-level answer ranking tasks. Experiment results demonstrate the superiority of our proposed model on community-based QA datasets.</abstract>
<identifier type="citekey">yang-etal-2019-sequential</identifier>
<identifier type="doi">10.18653/v1/N19-1228</identifier>
<location>
<url>https://aclanthology.org/N19-1228</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>2201</start>
<end>2211</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sequential Attention with Keyword Mask Model for Community-based Question Answering
%A Yang, Jianxin
%A Rong, Wenge
%A Shi, Libin
%A Xiong, Zhang
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F yang-etal-2019-sequential
%X In Community-based Question Answering system(CQA), Answer Selection(AS) is a critical task, which focuses on finding a suitable answer within a list of candidate answers. For neural network models, the key issue is how to model the representations of QA text pairs and calculate the interactions between them. We propose a Sequential Attention with Keyword Mask model(SAKM) for CQA to imitate human reading behavior. Question and answer text regard each other as context within keyword-mask attention when encoding the representations, and repeat multiple times(hops) in a sequential style. So the QA pairs capture features and information from both question text and answer text, interacting and improving vector representations iteratively through hops. The flexibility of the model allows to extract meaningful keywords from the sentences and enhance diverse mutual information. We perform on answer selection tasks and multi-level answer ranking tasks. Experiment results demonstrate the superiority of our proposed model on community-based QA datasets.
%R 10.18653/v1/N19-1228
%U https://aclanthology.org/N19-1228
%U https://doi.org/10.18653/v1/N19-1228
%P 2201-2211
Markdown (Informal)
[Sequential Attention with Keyword Mask Model for Community-based Question Answering](https://aclanthology.org/N19-1228) (Yang et al., NAACL 2019)
ACL