Is Something Better than Nothing? Automatically Predicting Stance-based Arguments Using Deep Learning and Small Labelled Dataset

Pavithra Rajendran, Danushka Bollegala, Simon Parsons


Abstract
Online reviews have become a popular portal among customers making decisions about purchasing products. A number of corpora of reviews have been widely investigated in NLP in general, and, in particular, in argument mining. This is a subset of NLP that deals with extracting arguments and the relations among them from user-based content. A major problem faced by argument mining research is the lack of human-annotated data. In this paper, we investigate the use of weakly supervised and semi-supervised methods for automatically annotating data, and thus providing large annotated datasets. We do this by building on previous work that explores the classification of opinions present in reviews based whether the stance is expressed explicitly or implicitly. In the work described here, we automatically annotate stance as implicit or explicit and our results show that the datasets we generate, although noisy, can be used to learn better models for implicit/explicit opinion classification.
Anthology ID:
N18-2005
Volume:
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
Month:
June
Year:
2018
Address:
New Orleans, Louisiana
Editors:
Marilyn Walker, Heng Ji, Amanda Stent
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
28–34
Language:
URL:
https://aclanthology.org/N18-2005
DOI:
10.18653/v1/N18-2005
Bibkey:
Cite (ACL):
Pavithra Rajendran, Danushka Bollegala, and Simon Parsons. 2018. Is Something Better than Nothing? Automatically Predicting Stance-based Arguments Using Deep Learning and Small Labelled Dataset. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 28–34, New Orleans, Louisiana. Association for Computational Linguistics.
Cite (Informal):
Is Something Better than Nothing? Automatically Predicting Stance-based Arguments Using Deep Learning and Small Labelled Dataset (Rajendran et al., NAACL 2018)
Copy Citation:
PDF:
https://aclanthology.org/N18-2005.pdf