@inproceedings{zhang-etal-2018-syntax,
title = "Syntax Encoding with Application in Authorship Attribution",
author = "Zhang, Richong and
Hu, Zhiyuan and
Guo, Hongyu and
Mao, Yongyi",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1294/",
doi = "10.18653/v1/D18-1294",
pages = "2742--2753",
abstract = "We propose a novel strategy to encode the syntax parse tree of sentence into a learnable distributed representation. The proposed syntax encoding scheme is provably information-lossless. In specific, an embedding vector is constructed for each word in the sentence, encoding the path in the syntax tree corresponding to the word. The one-to-one correspondence between these {\textquotedblleft}syntax-embedding{\textquotedblright} vectors and the words (hence their embedding vectors) in the sentence makes it easy to integrate such a representation with all word-level NLP models. We empirically show the benefits of the syntax embeddings on the Authorship Attribution domain, where our approach improves upon the prior art and achieves new performance records on five benchmarking data sets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2018-syntax">
<titleInfo>
<title>Syntax Encoding with Application in Authorship Attribution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Richong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyu</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongyi</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel strategy to encode the syntax parse tree of sentence into a learnable distributed representation. The proposed syntax encoding scheme is provably information-lossless. In specific, an embedding vector is constructed for each word in the sentence, encoding the path in the syntax tree corresponding to the word. The one-to-one correspondence between these “syntax-embedding” vectors and the words (hence their embedding vectors) in the sentence makes it easy to integrate such a representation with all word-level NLP models. We empirically show the benefits of the syntax embeddings on the Authorship Attribution domain, where our approach improves upon the prior art and achieves new performance records on five benchmarking data sets.</abstract>
<identifier type="citekey">zhang-etal-2018-syntax</identifier>
<identifier type="doi">10.18653/v1/D18-1294</identifier>
<location>
<url>https://aclanthology.org/D18-1294/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>2742</start>
<end>2753</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Syntax Encoding with Application in Authorship Attribution
%A Zhang, Richong
%A Hu, Zhiyuan
%A Guo, Hongyu
%A Mao, Yongyi
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F zhang-etal-2018-syntax
%X We propose a novel strategy to encode the syntax parse tree of sentence into a learnable distributed representation. The proposed syntax encoding scheme is provably information-lossless. In specific, an embedding vector is constructed for each word in the sentence, encoding the path in the syntax tree corresponding to the word. The one-to-one correspondence between these “syntax-embedding” vectors and the words (hence their embedding vectors) in the sentence makes it easy to integrate such a representation with all word-level NLP models. We empirically show the benefits of the syntax embeddings on the Authorship Attribution domain, where our approach improves upon the prior art and achieves new performance records on five benchmarking data sets.
%R 10.18653/v1/D18-1294
%U https://aclanthology.org/D18-1294/
%U https://doi.org/10.18653/v1/D18-1294
%P 2742-2753
Markdown (Informal)
[Syntax Encoding with Application in Authorship Attribution](https://aclanthology.org/D18-1294/) (Zhang et al., EMNLP 2018)
ACL
- Richong Zhang, Zhiyuan Hu, Hongyu Guo, and Yongyi Mao. 2018. Syntax Encoding with Application in Authorship Attribution. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2742–2753, Brussels, Belgium. Association for Computational Linguistics.