@inproceedings{beigman-klebanov-etal-2017-detecting,
title = "Detecting Good Arguments in a Non-Topic-Specific Way: An Oxymoron?",
author = "Beigman Klebanov, Beata and
Gyawali, Binod and
Song, Yi",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2038/",
doi = "10.18653/v1/P17-2038",
pages = "244--249",
abstract = "Automatic identification of good arguments on a controversial topic has applications in civics and education, to name a few. While in the civics context it might be acceptable to create separate models for each topic, in the context of scoring of students' writing there is a preference for a single model that applies to all responses. Given that good arguments for one topic are likely to be irrelevant for another, is a single model for detecting good arguments a contradiction in terms? We investigate the extent to which it is possible to close the performance gap between topic-specific and across-topics models for identification of good arguments."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="beigman-klebanov-etal-2017-detecting">
<titleInfo>
<title>Detecting Good Arguments in a Non-Topic-Specific Way: An Oxymoron?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Binod</namePart>
<namePart type="family">Gyawali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic identification of good arguments on a controversial topic has applications in civics and education, to name a few. While in the civics context it might be acceptable to create separate models for each topic, in the context of scoring of students’ writing there is a preference for a single model that applies to all responses. Given that good arguments for one topic are likely to be irrelevant for another, is a single model for detecting good arguments a contradiction in terms? We investigate the extent to which it is possible to close the performance gap between topic-specific and across-topics models for identification of good arguments.</abstract>
<identifier type="citekey">beigman-klebanov-etal-2017-detecting</identifier>
<identifier type="doi">10.18653/v1/P17-2038</identifier>
<location>
<url>https://aclanthology.org/P17-2038/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>244</start>
<end>249</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Good Arguments in a Non-Topic-Specific Way: An Oxymoron?
%A Beigman Klebanov, Beata
%A Gyawali, Binod
%A Song, Yi
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F beigman-klebanov-etal-2017-detecting
%X Automatic identification of good arguments on a controversial topic has applications in civics and education, to name a few. While in the civics context it might be acceptable to create separate models for each topic, in the context of scoring of students’ writing there is a preference for a single model that applies to all responses. Given that good arguments for one topic are likely to be irrelevant for another, is a single model for detecting good arguments a contradiction in terms? We investigate the extent to which it is possible to close the performance gap between topic-specific and across-topics models for identification of good arguments.
%R 10.18653/v1/P17-2038
%U https://aclanthology.org/P17-2038/
%U https://doi.org/10.18653/v1/P17-2038
%P 244-249
Markdown (Informal)
[Detecting Good Arguments in a Non-Topic-Specific Way: An Oxymoron?](https://aclanthology.org/P17-2038/) (Beigman Klebanov et al., ACL 2017)
ACL