@inproceedings{tang-etal-2023-explain,
title = "Explain-then-translate: an analysis on improving program translation with self-generated explanations",
author = "Tang, Zilu and
Agarwal, Mayank and
Shypula, Alexander and
Wang, Bailin and
Wijaya, Derry and
Chen, Jie and
Kim, Yoon",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.119/",
doi = "10.18653/v1/2023.findings-emnlp.119",
pages = "1741--1788",
abstract = "This work explores the use of self-generated natural language explanations as an intermediate step for code-to-code translation with language models. Across three types of explanations and 19 programming languages constructed from the MultiPL-E dataset, we find the explanations to be particularly effective in the zero-shot case, improving performance by 12{\%} on average. Improvements with natural language explanations are particularly pronounced on difficult programs. We release our dataset, code, and canonical solutions in all 19 languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tang-etal-2023-explain">
<titleInfo>
<title>Explain-then-translate: an analysis on improving program translation with self-generated explanations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zilu</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mayank</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Shypula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bailin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derry</namePart>
<namePart type="family">Wijaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoon</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work explores the use of self-generated natural language explanations as an intermediate step for code-to-code translation with language models. Across three types of explanations and 19 programming languages constructed from the MultiPL-E dataset, we find the explanations to be particularly effective in the zero-shot case, improving performance by 12% on average. Improvements with natural language explanations are particularly pronounced on difficult programs. We release our dataset, code, and canonical solutions in all 19 languages.</abstract>
<identifier type="citekey">tang-etal-2023-explain</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.119</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.119/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>1741</start>
<end>1788</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Explain-then-translate: an analysis on improving program translation with self-generated explanations
%A Tang, Zilu
%A Agarwal, Mayank
%A Shypula, Alexander
%A Wang, Bailin
%A Wijaya, Derry
%A Chen, Jie
%A Kim, Yoon
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F tang-etal-2023-explain
%X This work explores the use of self-generated natural language explanations as an intermediate step for code-to-code translation with language models. Across three types of explanations and 19 programming languages constructed from the MultiPL-E dataset, we find the explanations to be particularly effective in the zero-shot case, improving performance by 12% on average. Improvements with natural language explanations are particularly pronounced on difficult programs. We release our dataset, code, and canonical solutions in all 19 languages.
%R 10.18653/v1/2023.findings-emnlp.119
%U https://aclanthology.org/2023.findings-emnlp.119/
%U https://doi.org/10.18653/v1/2023.findings-emnlp.119
%P 1741-1788
Markdown (Informal)
[Explain-then-translate: an analysis on improving program translation with self-generated explanations](https://aclanthology.org/2023.findings-emnlp.119/) (Tang et al., Findings 2023)
ACL