@inproceedings{morales-garzon-etal-2021-semantic,
title = "Semantic-aware transformation of short texts using word embeddings: An application in the Food Computing domain",
author = "Morales-Garz{\'o}n, Andrea and
G{\'o}mez-Romero, Juan and
Martin-Bautista, Maria J.",
editor = "Sorodoc, Ionut-Teodor and
Sushil, Madhumita and
Takmaz, Ece and
Agirre, Eneko",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-srw.20/",
doi = "10.18653/v1/2021.eacl-srw.20",
pages = "148--154",
abstract = "Most works in food computing focus on generating new recipes from scratch. However, there is a large number of new online recipes generated daily with a large number of users reviews, with recommendations to improve the recipe flavor and ideas to modify them. This fact encourages the use of these data for obtaining improved and customized versions. In this thesis, we propose an adaptation engine based on fine-tuning a word embedding model. We will capture, in an unsupervised way, the semantic meaning of the recipe ingredients. We will use their word embedding representations to align them to external databases, thus enriching their data. The adaptation engine will use this food data to modify a recipe into another fitting specific user preferences (e.g., decrease caloric intake or make a recipe). We plan to explore different types of recipe adaptations while preserving recipe essential features such as cuisine style and essence simultaneously. We will also modify the rest of the recipe to the new changes to be reproducible."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="morales-garzon-etal-2021-semantic">
<titleInfo>
<title>Semantic-aware transformation of short texts using word embeddings: An application in the Food Computing domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Morales-Garzón</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Gómez-Romero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Martin-Bautista</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ionut-Teodor</namePart>
<namePart type="family">Sorodoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Madhumita</namePart>
<namePart type="family">Sushil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ece</namePart>
<namePart type="family">Takmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eneko</namePart>
<namePart type="family">Agirre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most works in food computing focus on generating new recipes from scratch. However, there is a large number of new online recipes generated daily with a large number of users reviews, with recommendations to improve the recipe flavor and ideas to modify them. This fact encourages the use of these data for obtaining improved and customized versions. In this thesis, we propose an adaptation engine based on fine-tuning a word embedding model. We will capture, in an unsupervised way, the semantic meaning of the recipe ingredients. We will use their word embedding representations to align them to external databases, thus enriching their data. The adaptation engine will use this food data to modify a recipe into another fitting specific user preferences (e.g., decrease caloric intake or make a recipe). We plan to explore different types of recipe adaptations while preserving recipe essential features such as cuisine style and essence simultaneously. We will also modify the rest of the recipe to the new changes to be reproducible.</abstract>
<identifier type="citekey">morales-garzon-etal-2021-semantic</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-srw.20</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-srw.20/</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>148</start>
<end>154</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic-aware transformation of short texts using word embeddings: An application in the Food Computing domain
%A Morales-Garzón, Andrea
%A Gómez-Romero, Juan
%A Martin-Bautista, Maria J.
%Y Sorodoc, Ionut-Teodor
%Y Sushil, Madhumita
%Y Takmaz, Ece
%Y Agirre, Eneko
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F morales-garzon-etal-2021-semantic
%X Most works in food computing focus on generating new recipes from scratch. However, there is a large number of new online recipes generated daily with a large number of users reviews, with recommendations to improve the recipe flavor and ideas to modify them. This fact encourages the use of these data for obtaining improved and customized versions. In this thesis, we propose an adaptation engine based on fine-tuning a word embedding model. We will capture, in an unsupervised way, the semantic meaning of the recipe ingredients. We will use their word embedding representations to align them to external databases, thus enriching their data. The adaptation engine will use this food data to modify a recipe into another fitting specific user preferences (e.g., decrease caloric intake or make a recipe). We plan to explore different types of recipe adaptations while preserving recipe essential features such as cuisine style and essence simultaneously. We will also modify the rest of the recipe to the new changes to be reproducible.
%R 10.18653/v1/2021.eacl-srw.20
%U https://aclanthology.org/2021.eacl-srw.20/
%U https://doi.org/10.18653/v1/2021.eacl-srw.20
%P 148-154
Markdown (Informal)
[Semantic-aware transformation of short texts using word embeddings: An application in the Food Computing domain](https://aclanthology.org/2021.eacl-srw.20/) (Morales-Garzón et al., EACL 2021)
ACL