@inproceedings{rogers-augenstein-2020-improve,
title = "What Can We Do to Improve Peer Review in {NLP}?",
author = "Rogers, Anna and
Augenstein, Isabelle",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.112/",
doi = "10.18653/v1/2020.findings-emnlp.112",
pages = "1256--1262",
abstract = "Peer review is our best tool for judging the quality of conference submissions, but it is becoming increasingly spurious. We argue that a part of the problem is that the reviewers and area chairs face a poorly defined task forcing apples-to-oranges comparisons. There are several potential ways forward, but the key difficulty is creating the incentives and mechanisms for their consistent implementation in the NLP community."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rogers-augenstein-2020-improve">
<titleInfo>
<title>What Can We Do to Improve Peer Review in NLP?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Peer review is our best tool for judging the quality of conference submissions, but it is becoming increasingly spurious. We argue that a part of the problem is that the reviewers and area chairs face a poorly defined task forcing apples-to-oranges comparisons. There are several potential ways forward, but the key difficulty is creating the incentives and mechanisms for their consistent implementation in the NLP community.</abstract>
<identifier type="citekey">rogers-augenstein-2020-improve</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.112</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.112/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>1256</start>
<end>1262</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What Can We Do to Improve Peer Review in NLP?
%A Rogers, Anna
%A Augenstein, Isabelle
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F rogers-augenstein-2020-improve
%X Peer review is our best tool for judging the quality of conference submissions, but it is becoming increasingly spurious. We argue that a part of the problem is that the reviewers and area chairs face a poorly defined task forcing apples-to-oranges comparisons. There are several potential ways forward, but the key difficulty is creating the incentives and mechanisms for their consistent implementation in the NLP community.
%R 10.18653/v1/2020.findings-emnlp.112
%U https://aclanthology.org/2020.findings-emnlp.112/
%U https://doi.org/10.18653/v1/2020.findings-emnlp.112
%P 1256-1262
Markdown (Informal)
[What Can We Do to Improve Peer Review in NLP?](https://aclanthology.org/2020.findings-emnlp.112/) (Rogers & Augenstein, Findings 2020)
ACL
- Anna Rogers and Isabelle Augenstein. 2020. What Can We Do to Improve Peer Review in NLP?. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1256–1262, Online. Association for Computational Linguistics.