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Abstract—In the realm of analyzing Rust programs, traditional
full-scale analytical approaches are often rendered impractical
due to considerable time and performance expenditures. Despite
the potential for program slicing technologies to drastically
curtail these expenses, the vast majority of existing slicing tools
lack compatibility with the Rust language. This study introduces
RustPruner, a specialized tool designed for slicing Rust code.
RustPruner commences by constructing a goto-style control flow
graph (CFG) through rigorous control flow analysis, comprehen-
sively mapping out all feasible execution paths. Subsequently, it
leverages a backward slicing algorithm, integrating the outcomes
of program dependency analysis and abstract syntax tree (AST)
analysis, to generate precise program slices. By innovatively
adapting slicing technology to Rust, RustPruner facilitates com-
prehensive, low-level analysis of Rust’s distinctive features. The
generated slices undergo rigorous compilation and verification
procedures, thereby enhancing the efficiency of the analysis
process. The effectiveness of RustPruner has been validated
within some crucial system modules of operational operating
systems, which significantly improves both the efficiency and
accuracy of the verification.

Index Terms—Rust analysis, program slicing, control flow
graph, abstract syntax tree

I. INTRODUCTION

Rust has rapidly emerged in the field of software develop-
ment, championed by its safety features. Following its initial
release in 2010, Rust has been extensively adopted across vari-
ous critical domains. To guarantee the security and correctness
of these systems, thorough code analysis and verification are
required, which can significantly deplete time and performance
resources. Program slicing can mitigate much of such resource
expenditure by eliminating unnecessary analysis, making it
especially vital in Rust development. However, despite the
swift growth of Rust, there is a notable lack of slicing tools
tailored for Rust.

Program slicing [1] is a method of code analysis that
enables developers to extract code segments related to specific
functionalities or requirements. Although Rust slicing holds
significant potential in theory, it faces considerable challenges
in practical application. Firstly, the unique ownership [2] and
lifetime [3] rules of the Rust language complicate the applica-
tion of slicing techniques. Secondly, the current lack of slicing
tools tailored for the Rust language often necessitates reliance
on manual analysis for Rust program slicing operations, which
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is not only inefficient but also fails to fully leverage the
distinctive features of the Rust language.

To address these issues, this paper presents RustPruner, a
tool designed to provide Rust developers with an efficient
and precise solution for code slicing. RustPruner resolves
compatibility issues with traditional slicing tools by trans-
forming programs into an intermediate goto representation
that captures the language-specific features of Rust. Through
backward analysis [4], it traces from the program’s outputs
or assertions to all code that may affect the results, revealing
the dependencies among various parts of the program. This
analysis is especially crucial for understanding the system
structure in large software projects. Through this process, we
can obtain the most minimal code segments closely related
to the target, effectively reducing interference from irrelevant
code and enhancing the focus and accuracy of the analysis.

In the experimental section, this paper employs validation
projects from real-world operating systems to assess the ef-
fectiveness and performance of RustPruner. The four projects
in the experimental section all originate from the process
scheduling module, which is a key module of the operating
system. The experimental results indicate that RustPruner
not only significantly reduces the amount of code but also
maintains the consistency of verification properties through
program verification operations on the generated slices. This
enhances the efficiency and precision of verification and
analysis tasks and also confirms the practicality of the tool
in managing larger projects.

The contributions of this paper are as follows:
1) We propose a framework for program slicing in Rust

that effectively tackles the challenges associated with
Rust language slicing, thereby enhancing the efficiency
and accuracy of code analysis.

2) Compatibility issues of Rust language features in tradi-
tional slicing tools are resolved, and efficient filtering
and reorganization of code are achieved through precise
AST analysis using a custom visitor.

3) The RustPruner tool is successfully implemented based
on the proposed framework and its performance are eval-
uated in complex verification projects, demonstrating the
tool’s validity and capabilities.

The rest of this paper is organized as follows. Section
2 provides background information. Section 3 discusses the
technical framework of the tool. Section 4 evaluates the
efficacy of RustPrunner. Section 5 lists related literature.
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use std::*;
......
fn func1(x: i32)->i32{
    return x + 1;
}
fn func2(x: i32)->i32{
    return x + 2;
}
fn main(){
    let x = 0;
    let y = 1;
    let a = func(x);
    assert! (a == 1);
}
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Fig. 1: The RustPruner Overview

II. BACKGROUND

A. Program Slicing

Program slicing [1] is a code analysis technique that extracts
the smallest segment of code directly related to a specific goal
from complex program code. This concept was first formally
introduced by Weiser in his 1979 doctoral dissertation [5].
The basic process of program slicing includes several key
steps: first, construct the control flow graph (CFG) [6], which
represents all possible execution paths in the program; then
perform data flow analysis to determine how the values of
variables and expressions propagate within the program; then,
based on the analysis results, construct a dependency graph
[7] and use slicing algorithms, such as forward slicing [8],
backward slicing [9], static slicing [10], dynamic slicing [11],
etc., to extract code segments related to requirements from the
dependency graph.

B. Challenges

As an emerging system programming language, Rust’s
unique ownership [2] and lifetime [3] checking mechanisms
directly affect the slicability of code. In the Rust programming
language, ownership and lifetimes are two core concepts for
memory safety at compile time. Ownership rules define how
resources are allocated, shared, and released, while lifetimes
ensure the validity of references. When slicing, it is necessary
to clarify the ownership of the data to avoid multiple releases
of data or dangling references. At the same time, the lifetime
of the slice must be consistent with the shortest lifetime of the
referenced data. These factors combined bring new challenges
to slicing Rust programs, leading to a relative scarcity of Rust
slicing tools at present.

C. Current Status of Tools

In the Rust language, the abstract syntax tree (AST) plays
an extremely important role. The AST represents various
elements in the source code and their interrelationships in
a tree-like form. By recursion or iteration, each node of the
AST can be easily accessed, making it simple to traverse the

code. In Rust, the language’s AST can be obtained through
the syn library [12]. The Span in the syn library is a core
concept, representing a specific area in the source code, such
as the start and end positions of an identifier, expression, or
statement. This concept is crucial for understanding the code
structure and performing precise code analysis.

Furthermore, Kani [13] is a symbolic model checking tool
for the intermediate intermediate representation (MIR) [14]
of Rust. It serves as a backend for the Rust compiler’s code
generation, using the kani::proof attribute to specify functions
that need to be verified with the Kani tool. Kani performs
control flow and data flow analysis on these functions and
transforms MIR into goto programs. Goto programs are a
type of control flow graph that includes key information such
as variable and type information, function call relationships,
execution paths, and conditional judgments. However, it is
worth noting that Kani does not support slicing functions and
therefore cannot perform slicing analysis.

In addition, CBMC [15] is a static verification tool designed
to identify potential errors in programs. CBMC can optimize
goto programs, including dead code elimination [16], function
inlining [17], Goto slicing [18], etc. The core mechanism of
Goto slicing is to deeply analyze the Control Flow Graph
(CFG) [6], identify and replace unreachable basic blocks with
skip statements, which are ultimately removed. This process
specifically targets functions or methods that will never be
touched during program execution, as well as branches in con-
ditional statements that are never satisfied. Although CBMC is
a powerful tool, it is mainly designed for C and C++ languages
and lacks support for features of other languages, such as
Rust’s ownership and lifetime.

III. METHODOLOGY

Fig. 1 depicts the technical framework of RustPruner. It
consists of three principal processes: source code processing,
AST analysis, and slicing implementation. The remaining
sections will provide an in-depth presentation of the specifics
for each process.



A. Source Code Processing

Our tool can conduct dependency analysis on both individ-
ual Rust files and entire Rust projects. Single files typically do
not import Rust libraries other than the standard library and
only contain Rust source code, suitable for simple scenarios.
On the other hand, project files consist of multiple source files,
configuration files, and dependencies, managed by Cargo, suit-
able for the development of complex applications or libraries.
Therefore, during dependency acquisition, the two inputs are
processed separately to improve the accuracy and efficiency
of the analysis.

We receive a Rust file (or project) for verification and start
from each statement in the target function proof, which is the
entry function for the Kani verification tool and also the slicing
entry for RustPruner. Conduct a data flow analysis, using the
Kani verification tool to obtain a control flow graph in the form
of a goto file, which includes all possible execution paths and
a large amount of dependency information unrelated to the
proof framework. Then, conduct a backward analysis through
the assertions in the proof or the output or assertions in the
functions it calls. Using CBMC, mark the key information
and remove the irrelevant information from these goto files
to obtain a new goto file that only contains dependency
information related to the proof framework. Finally, we ex-
tract the source code information corresponding to the key
information from the new goto file, including the proof of
the target function and all its related dependencies, forming a
dependency relationship. A dependency relationship refers to a
Rust element (such as a function, static variable, enumeration,
etc.) that requires another Rust element to function properly.
This relationship indicates that if the depended-upon element
changes, the elements that depend on it may also need to
change accordingly.

The following Rust code snippet is an example of demon-
strating the function of each method.

1 struct Point {
2 x: i32,
3 y: i32,
4 }
5 impl Point {
6 fn distance(&self, other: &Point) -> i32

{
7 let dx = self.x - other.x;
8 let dy = self.y - other.y;
9 (dx.abs() + dy.abs()).max(0)

10 }
11 }
12 fn midpoint(p1: &Point, p2: &Point) -> Point

{
13 Point{x: (p1.x + p2.x) / 2, y: (p1.y +

p2.y) / 2}
14 }
15 fn sum_of_coordinates(point: &Point) -> i32

{
16 point.x + point.y
17 }
18 fn main() {
19 let p1 = Point{x: 1, y: 2};
20 let p2 = Point{x: 5, y: 2};

21 let p3 = Point{x: 0, y: 0};
22 let dist = p1.distance(&p2);
23 assert!(dist == 4);
24 }
25 #[kani::proof]
26 fn verifymain(){
27 main();
28 }

The above source code can be parsed into the structure
diagram shown in Fig. 2. As the Figure shows, each red
arrow in the parsing diagram is obtained through source code
processing. Starting from the entry flag proof, it enters the
unique called function main of the function verifymain(), from
assert it finds the definition statement of the variable dist,
and then according to the definition statement, it finds the
called function distance and parameters p1 and p2 in the right
value of the statement, and finds the structure definition of the
parameter struct. Finally, the nodes involved are connected
with red arrows. The arrows in the diagram represent the
dependency and dependent relationships, with the starting
point of the arrow depending on the endpoint of the arrow.

Fig. 2: Program Analysis

B. AST Analysis

Upon receiving a file (or project) for verification, we also
conduct code parsing on the source files, which is done
concurrently with dependency analysis. We compile the source
code and construct an abstract syntax tree (AST) at the same
time, traversing the AST to obtain the necessary structures and
data from the source code.

Specifically, we have defined an information collector
named CodeCollector, which traverses all files in the specified
directory and filters out all Rust source files. For each Rust
source file, it reads the file content and uses the syn library
to parse the content into an abstract syntax tree (AST). Addi-
tionally, CodeCollector implements the visit trait, enabling it
to customize the access and extraction of specific information
within the code. To be precise, it obtains basic information of
different types of Rust language elements from the AST, which
is the Node information. Node information includes the name,
type, starting line number, and ending line number, etc. The
different types of Rust language elements include functions,
static variables, enumerations, traits, and impl blocks, etc. All
collected Node information is stored in the CodeCollector’s



information collector, forming a Rust element information
repository, namely the Span library. This plays a crucial role
in the subsequent code slicing process.

When dealing with Rust’s lifetime and ownership issues,
the Node information is utilized. Each Node information
covers the entire scope of Rust elements, essentially ensuring
the complete architecture of the dependent elements. In this
way, semantic boundaries, operational logic, and resource
management are encapsulated within a closed context, thereby
ensuring the correctness and reliability of the program. Thus,
the internal code logic is complete, including the entire process
of variable creation, usage, and destruction. At the same time,
the paths of ownership transfer are not mistakenly truncated.
So it is unlikely to accidentally remove key variables and
create or destroy code when extracting code snippets, which
can greatly reduce the risk of code violating ownership and
lifetime rules after slicing.

As shown in Fig. 2, each yellow node is obtained through
the AST analysis, representing different types of items in
the Rust source code, including constants (Const), functions
(Fn), structures (Struct), implementations (Impl), and asser-
tions (assert) types, totaling 10 nodes. Each node contains
corresponding information, including line number information,
code structure type flags, source code paths, and other infor-
mation.

C. Slicing Implementation

In the slicing implementation phase, we first traverse and
filter the Span library within the organizational structure
information. According to specific sorting rules, we extract
the Nodes that match the dependency relationships from the
library and map the source code portions of these Nodes to
a new file. Specifically, for each function Node, we deter-
mine whether its starting and ending line numbers include
the function line numbers collected in the dependency rela-
tionships. If the condition is met, we selectively write the
function definitions into the new file. Similarly, we achieve
the extraction and preservation of code snippets such as use
statements, structures, and so on.

In Fig. 2 , the blue dashed line is the function implemented
in this part. The ones that match successfully will appear above
the blue dividing line, and then be sorted and reorganized; the
nodes that do not match successfully, that is, those irrelevant
codes, will be below the blue dividing line, ready to be
eliminated.

Therefore, by inputting the example source code into Rust-
Pruner and proceeding through the aforementioned three steps,
the following sliced code is obtained.

1 struct Point {
2 x: i32,
3 y: i32,
4 }
5 impl Point {
6 fn distance(&self, other: &Point) -> i32

{
7 let dx = self.x - other.x;
8 let dy = self.y - other.y;

9 (dx.abs() + dy.abs()).max(0)
10 }
11 }
12 fn main() {
13 let p1 = Point{x: 1, y: 2};
14 let p2 = Point{x: 5, y: 2};
15 let dist = p1.distance(&p2);
16 assert!(dist == 4);
17 }
18 #[kani::proof]
19 fn verify_main(){
20 }

IV. EXPERIMENTAL EVALUATION

Multiple experiments were conducted to evaluate the effi-
cacy of program slicing for Rust applications. This section
describes the experimental setup and experimental result.

A. Experimental Setup

The experimental setup includes the experimental environ-
ment, the test set used, the slicing criteria and an explanation of
the benchmarks for comparison. All experiments were done on
a machine equipped with AMD Ryzen 8845H CPUs, operating
at 3.80 GHz, and configured with 32 GB of RAM. Each
experiment was constrained to utilize only a single core and 8
GB of memory.The software environment for the experiments
is described in Table 1.

TABLE I: Experimental Software Environment

Software Version

Ubuntu 22.04.4 LTS
Rust 1.70.0-nightly
Kani 0.51.0

CBMC cbmc-5.95.1 (64-bit x86 64 linux)

The test set for the experiments comprises four verification
projects extracted from actual operating system projects. All
are from the task scheduling module: Project A selects the
first ready thread from the thread queue to be the current
thread. Project B executes the current thread and switches
between user mode and kernel mode. Project C performs
cleanup operations based on the status of the thread that has
finished running. Project D is the main loop of the user-mode
program. Each project has an average of 1,079 source lines of
code (sloc). The largest project contains 1,543 sloc, while the
smallest includes 222 sloc computed by VS Code Counter1.

Our slicing criterion involves all statements under the
#[kani::proof] attribute. This attribute marks functions as entry
points for Kani to verification, indicating to the Kani that the
specified function contains assertions for formal verification.
When Kani is executed, it focuses specifically on these marked
functions, attempting to formally verify that the assertions
hold true under all possible inputs. Our slicing tool retains all
statements dependent on these functions. Through algorithmic
processing tailored for Rust programs, it ensures that the sliced

1https://marketplace.visualstudio.com/items?itemName=uctakeoff.
vscode-counter



program remains executable and that the verification results are
consistent with the original program.

Prior to verifying Rust projects, we conducted a survey of
many static slicing tools. Within our current research scope, no
practical tools were found capable of slicing Rust programs
directly. Consequently, we compiled Rust into LLVM code
and tested a variety of tools that perform slicing on LLVM-IR
or LLVM-bitcode. These tools included LLVM-slicing [19],
LLVM-slicer2, semslice [20], DG [21], and sbt-slicer3. How-
ever, we discovered that existing LLVM-level slicing tools do
not support slicing of Rust programs effectively. Therefore, our
experiments primarily focus on evaluating the performance of
our tool rather than comparing it with other existing tools.

B. Experimental Result

We conducted experiments on the aforementioned test set
by measuring the slicing time, verification time and the size of
the slice. All the algorithms and ideas described in this paper
have been implemented to ensure the feasibility of slicing Rust
programs and to maintain the executability and verifiability of
the programs after slicing.

TABLE II: Verification Results

Project Verification Consistency Failures Success

A True 1 0
B True 0 3
C True 0 1
D True 0 1

After slicing, the projects maintain consistency with the
original projects in terms of verification attributes, as shown
in TABLE II . Project A has 1 failure, Project B has 3
successfully verified harnesses, and both Project C and Project
D have 1 successfully verified harness each. The summary
of the experimental results is shown in TABLE III. The
descriptions for some columns in TABLE III are as follows:

• Ver. Time: Average verification time of the original
project

• Src Size: Number of source lines of code in the original
project

• Slice Size: Number of source lines of code after project
slicing

• Slice Time: Average slicing time for the project
The methodology adopted for measuring performance in-

cluded the following procedure: Each time measurement,
whether for project verification or a specific slice, was per-
formed 10 times. The initial iteration was always discarded
to eliminate the effects of dynamically loading libraries into
physical memory and data remaining in the disk cache. After
each slicing or verification, the project’s object files were
cleared before conducting the experiment again.

TABLE III and Fig. 3 provide a comprehensive analysis of
the slicing effects on various projects labeled A, B, C, and D.

2https://github.com/jirislaby/LLVMSlicer
3https://github.com/staticafi/sbt-slicer

TABLE III: experimental statistics

Proj. Ver. Time Src Size Slice Size Slice Time

A 0.98 s 222 sloc 186 sloc 1.25 ms
B 2.17 s 1013 sloc 761 sloc 7.89 ms
C 2.97 s 1543 sloc 978 sloc 11.26 ms
D 3.67 s 1538 sloc 1316 sloc 24.96 ms

Fig. 3: Comparison of Size and Verification Time Before and
After Slicing

Each project underwent a series of measurements that assessed
slicing efficiency based on source size reduction before and
after slicing.

During the course of the experiment, Proj. A demonstrated
the smallest reduction in source code size but was processed
the fastest, indicating efficiency in handling smaller-scale
projects. In contrast, Proj. B, with a larger original source
size, showed significant reductions in source lines but required
longer processing times, reflecting the increased complexity
when dealing with large codebases.

Particularly, Proj. C and Proj. D, which started with larger
source sizes, exhibited substantial reductions post-slicing, val-
idating the effectiveness of the slicing tool in handling larger
projects. At the same time, the reduction in size and the
decrease in verification time after slicing may indicate a
positive correlation: that is, the reduction in project size helps
to speed up the verification process.

These findings demonstrate that the RustPruner tool has suc-
cessfully extended the application of program slicing to Rust
projects, ensuring, to some extent, that the slicing outcomes
are executable and that the verification results are consistent.

V. RELATED WORK

Program slicing can be categorized based on the consider-
ation of specific inputs to the program into static slicing [5]
and dynamic slicing [22]. Static slicing [5] involves analysis
directly from the program’s source code, employing techniques
such as data flow and control flow analysis to extract segments
of code related to a particular point of interest. This approach



takes into account all possible executions of the program,
yielding a more comprehensive slicing result. In contrast,
dynamic slicing [22] is conducted during the actual execution
of the program, where relevant code segments are extracted
based on the program’s execution path and state information.
Dynamic slicing is more readily implementable and tends to
produce more precise slicing outcomes.

Program slicing is distinguished by the direction of analysis
relative to a variable of interest, categorized into forward slic-
ing [8] and backward slicing [9].Forward slicing [8] initiates
at a designated starting point, such as a specific variable or
statement, and proceeds in the direction of the program’s
control and data flow to identify all code segments that could
potentially influence this point of origin. Conversely, backward
slicing [9] commences at a specified endpoint, like a particular
output or error, and retraces the control and data flow pathways
to extract code segments that may have an impact on this
terminal point.

Program slicing can be differentiated by the analytical tech-
niques and methodologies employed, which include Weiser’s
original slicing method [5], methods based on program infor-
mation flow relationships [23], and graph reachability-based
slicing methods [24]. Weiser’s original slicing method [5]
centers on scrutinizing the trajectory of data within a program
and ascertaining the statements that exert influence over the
data’s values. Methods based on program information flow
relationships [23] concentrate on the interdependencies among
program statements, employing a syntax-directed, bottom-
up methodology to compute these dependencies. Conversely,
graph reachability-based slicing methods [24] spotlight the
dependencies and reachability among program statements. By
fabricating distinct dependency graphs, which encapsulate a
variety of relational contexts, a spectrum of slicing outcomes
can be realized.

Program slicing methodologies are classified into the Pro-
gram Dependence Graph (PDG) [25] and the System Depen-
dence Graph (SDG) [26] based on their scope of analysis. PDG
[25] is a graphical representation of a program that captures
control and data dependencies, serving as a foundation for
intraprocedural slicing by enabling the precise extraction of
code segments related to specific program points. Building
upon this, the SDG [26] extends the scope to interprocedural
slicing by incorporating dependencies across multiple proce-
dures, thus accounting for the broader context of a system’s
behavior.

Our methodology adeptly applies the graph reachability
approach through the utilization of PDG, conducting a rigorous
intraprocedural analysis. We introduce a novel custom visitor
for traversing AST, which efficiently identifies and collects
critical code elements. By focusing on backward, static slic-
ing and capitalizing on the strengths of graph reachability,
our research effectively surpasses the limitations of current
methods. RustPruner’s providing a refined and effective slicing
technique that bolsters the analytical capabilities of software
engineering practitioners and researchers alike.
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