Automatic Type Inference for Proactive
Misconfiguration Prevention

Xiangyang Xu, Shanshan Li, Yong Guo, Wei Dong, Wang Li, Xiangke Liao
College of Computer Science
National University of Defense Technology
Changsha, China
Email: {xuxiangyangl1,shanshanli,yguo,wdong,liwang2015,xkliao} @nudt.edu.cn

Abstract—Misconfigurations have become a major cause of
software failures. Most research focuses on misconfiguration di-
agnosis and troubleshooting, which occur after the misconfigura-
tions have happened. Actually, if we can prevent misconfiguration
before software runs, many potential catastrophic failures of
systems can be avoided, thus reducing customers’ downtime and
support costs. In software configuration, we found that most con-
figuration options have specific constraints, which have a strong
connection with the configuration option type. If we can check
the configuration settings against the inferred type before the
software runs, many misconfigurations can be prevented. In this
paper, we explore a name-based method called ConfTypelnferer
to automatically infer the type of configuration options, which
can help users to correctly configure and check settings, thus
preventing misconfigurations proactively. We manually studied
several popular open-source software projects to investigate the
classification and naming conventions of configuration option.
Based on these findings, we designed and implemented the
ConfTypelnferer. We performed comprehensive experiments to
evaluate the effectiveness of our method.

Index Terms—misconfiguration prevention; configuration option
type inference; name-based analysis;

I. INTRODUCTION

In recent years, configuration issues have drawn tremendous
attention for their increasing prevalence and severity [1][2].
One important reason for today’s prevalent configuration is-
sues is the ever-increasing complexity of configuration, which
is reflected by the large and still increasing number of configu-
ration options. For example, hundreds of configuration options
need to be set for the running of database servers [3] and
web servers [4]. The runtime environment of software can be
determined from the settings of the configuration options, such
as memory size, time interval, resource limits, etc. To set them
correctly, users need to understand the meaning of each config-
uration option. Unfortunately, although most software manuals
contain a detailed description of how to set each configuration
option correctly, it is non-trivial for users to find out what the
corresponding guidance is. Users rarely have the patience to
look at thousands of pages of documents. They always make
configurations based on experience, or exaggerate a bit, by
intuition, which leads to many misconfiguration issues.

Faced with these issues, many previous studies [5] [6] [7]
[8] have devoted their work to misconfiguration diagnosis and

DOI reference number:10.18293/SEKE2017-072

/**Examplel-1: Httpd.conf**/

Option: DocumentRoot Type: filePath

Constraints: /.+(/.+)*

Diagnosis Effort
7 searches of in Internet

User’ s setting: root ;
3 collections of the system log

Correct Example: /document/root

/**Examplel-2: Squid.conf**/
The system startup without
any error information,
which might cause
potential system failures.

Option: as_who_server
Constraints: [a-z]+://.*

Type: URL

User” s setting: server!
Correct Example: htip://aswho.server.com

Fig. 1. Example of misconfiguration caused by invalid type. In example 1-1,
the user takes a path type for a filename type, and the diagnosis cost lots of
user effort. In example 1-2, the user sets a URL configuration option as a
server name, which is ignored by system.

troubleshooting, which occurs after the misconfigurations have
happened. Actually, if we can prevent or detect misconfigura-
tions before software runs, many potential catastrophic failures
of systems can be avoided, thus reducing not only the cus-
tomers’ downtime but also the support costs. Some researchers
have noticed that and already conducted some work to explore
misconfiguration prevention. Xu et al. [9] check parameter
settings at the system’s initialization time to reduce damage
from failures. Encore [10] detects software misconfigurations
by exploiting the interaction between the configuration settings
and the executing environment, as well as the rich correlations
between configuration entries. Actually, we found that most
configuration options have specific constraints, which have
a strong connection to the configuration option type. Fig. 1
gives two real-world examples of misconfigurations caused
by an invalid type. Without knowing the option type, a user’s
settings often violate configuration constraints, which results
in many misconfigurations. These misconfigurations waste a
tremendous amount of user effort for diagnosis and might
cause severe failure in the system’s runtime. If we can check
these configuration settings against the inferred type before
the software runs, many misconfigurations can be prevented.
In this paper, we try to prevent misconfiguration proactively
by inferring the configuration option type for users, which can
be used for checking the configuration settings, thus avoiding

many potential misconfigurations. We explore a name-based
method called ConfTypelnferer to automatically infer the type
of the configuration option.

Some challenges need to be addressed. First, we need a
specific and comprehensive classification for configuration
options, which is the basis of the type inference. Second, we
need to figure out the naming conventions for the configuration
options, which is the basis of semantic extraction. Third, we
need to verify whether the configuration-option name really
contains enough semantic information for type inference, or,
in other words, whether the name-based method works.

To address these challenges, we manually analyzed several
popular open-source software projects, such as PostgreSQL,
Httpd, Nginx, Squid, etc. After a thorough study of the
classification and naming conventions for their configuration-
option names, we investigated the feasibility of the name-
based method. Except for the enumeration type, the method
works well for inferring most configuration option types. Then
we designed and implemented ConfTypelnferer by combining
name-based analysis with program analysis, in which the
program analysis is to make up for the deficiency of the
name-based analysis in inferring the enumeration type of
configuration option and to verify the type inferred.

Our contributions are summarized as follows:

o Through manual analysis of several popular open-source
software projects, we summarized several instances of
finding configuration options, verifying the feasibility of
the name-based method (Section II).

o We designed and implemented the architecture for Con-
fTypelnferer, the name-based method used to infer the
type of configuration option (Section III and Section IV).

o We conducted comprehensive experiments to evaluate the
effectiveness of ConfTypelnferer. Our results show that
the accuracy of type inference can reach over 90%, and
at the same time, it can prevent many misconfigurations
(Section V).

II. THE FEASIBILITY OF THE NAME-BASED METHOD

To evaluate the feasibility of the name-based method, we
try to answer the following research questions:

RQ1: How many and what types of configuration option ex-
ist in open-source software projects? Answering this question
will provide a classification for type inference.

RQ2: What are the naming conventions for configuration
options in open-source software projects? Answering this
question will give us an in-depth understanding of configura-
tion option names, and provide us with some ideas for mining
semantic information from configuration option names.

RQ3: Do these configuration-option names convey enough
information for type inference? Answering this question is the
key to verify the feasibility of the name-based method.

To answer the above questions, we empirically studied more
than 1,000 configuration options in several popular open-
source software projects. The main findings of our study are
illustrated as follows.

TABLE I
COVERAGE OF OUR CLASSIFICATION IN OPEN-SOURCE SOFTWARE.
Software Number | Coverage(%)
Redis-3.2.3 70 98.6
PostgreSQL-9.6rc1 269 98.1
Lighthttpd 273 96.2
Postfix-2.5 109 94.7
Squid-3.5.21 340 90.0
MySQL-5.7.15 732 87.7
Httpd-2.4.23 634 86.1
Nginx-1.10.2 637 85.1
Mode
Boolean
—‘ Enumeration }— Language
MIME types
User name File path
_~ Name ‘_W Pz\Arlia.l file path
\Jtring i Filename Directory path

Partial directory

Path J_ path
WL—L Domain name

Configuration address
: . Others
| optiontype |

H URI

Email

Memory

. Time
Number with

units

Speed rate

meeric

Number }— Port
Fraction
Count

Permission

Fig. 2. Classification tree of configuration options

For RQI1, although some previous work [11] includes s-
tudies on type taxonomy, our aim is to generate configuration
constraints by type inference. Therefore, we need a sufficiently
fine-grained classification for all configuration options. We
manually analyzed software manuals, configuration files, and
even source code to classify each option. Fig. 2 illustrates
our classification in the form of a tree. This classification tree
can be supplemented with more software to be considered.
We evaluated our classification effectiveness on about 3,000
options of eight open-source software systems by checking
whether each option can be classified as one of types listed
Fig. 2. As shown in Table I, the coverage of the classification
is as high as 90% on average, with a minimum of 85.1%.
Therefore, the result indicates the validity and efficiency of
our classification.

For RQ2, we find that the configuration option names
chosen by programmers are usually made up of readable words
or common abbreviations connected by some separators. For
example, in PostgreSQL, programmers use underscores to con-
nect several words for the name of a configuration option, e.g.,
“listen_addresses,” while in Httpd programmers use camel-
case naming, e.g., “MaxRequestsPerChild,” This naming con-
vention makes it easier for us to perform text processing and
extract semantic information. Besides, those words contained
in configuration-option names usually convey explicit semantic
information, including explanation, description, or constraints

B more than two O two-word O single-word

100% 1 2 %
90%

80% 37% - 41% 29%
70% —
60%

50%

40%

30%

20%

10%

0% -

PostgreSQL Httpd Squid Nginx

Fig. 3. The number of words in the configuration-option name.

about the configuration option, which reflect the option’s
type to some extent. For instance, the option names of path
type usually contain keywords such as “directory,” “location,”
“path,” etc, and the option names of memory type usually
contain keywords such as “memory,” “buffer,” “size,” etc.
These keywords can be used to build a dictionary for each
configuration option type for keyword matching.

For RQ3, we studied the number of words in each
configuration-option name. As Fig. 3 shows, the majority
(91%-98%) of those configuration-option names contain more
than one words, this observation enhances the feasibility of the
name-based method because it is widely accepted that more
words convey more information. In addition, we find that this
name-based method doesn’t work well in some cases. On the
basis of the findings for RQ2, we established a dictionary
for each type by collecting those high-frequency keywords
in the configuration-option names, and implemented a simple
program to infer the configuration option type through text
processing and keyword matching. The inferring results are
presented in Fig.4. We observe that the inference results
are ideal (74%-100%) for most configuration option types.
Unfortunately, the tool behaved poorly (only 24%) when
inferring the enumeration type, whose ratio is relatively higher
than the other type. An enumeration type option means the
programmer enumerates all possible values to be set, while
it’s not impossible, but is difficult to infer the enumeration
type from several words since there are so many words that
can be used to express enumeration type. We chose abstract
syntax tree (AST) analysis to address this problem (introduced
in Section IV).

III. ARCHITECTURE OF CONFTYPEINFERER

Based on the findings in Section II, we designed and
implemented ConfTypelnferer, an automatic type inferer for
configuration options. Fig. 5 illustrates its architecture. In the
extraction phase, we take configuration files as input, which
could be the original template configuration files or user-
specified ones. After parsing the configuration files through
some parsing tool, we can determine the name of partial
configuration options. In the mapping phase, we use the
tool ConfMapper [12], which was designed to implement
automatic mapping from configuration options to the relevant

| I |
Permission I I I 00%.
Mail I J J 00%.
Password L 2 00%
[[[
Port I I I] 94
P] 88%
- [[[[
Fraction l] B I 188%
UserName 2 E 2 1 91%
. 1T [T [[
Count 1] 1] 90%
FileName [1 ﬁ l 1 74%
Time I T :] . 1 94
SpeedRate 7 I ‘ F 7 ‘ 7 87%
Memory [T LY . b] 94
) [[1
DomainName T I I] 95
Path 5 2 L .] 93%
Enumeration [] 24%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 4. The inference result of keyword matching.

program variables, and we get pairs of option and variable.
In the inferring phase, ConfTypelnferer conducts name-based
analysis on the configuration-option names to infer the type.
In addition, we identified the options for enumeration type by
AST analysis. In the verifying phase, we conducted data-flow
analysis for the program variable of each option to verify the
type inferred previously.

We implemented the AST analysis and data-flow analysis
on the basis of Clang [13], a C language family frontend for
LLVM [14].

IV. DESIGN AND IMPLEMENTATION

This section presents detailed descriptions of the design and
implementation of ConfTypelnferer. The goal of ConfTypeln-
ferer is to design a user-oriented tool that automatically infers
the configuration option type without any manual effort.

A. Extraction and Mapping

To infer the configuration option type, we need to extract
the configuration options and corresponding variables, which
is the basis of name-based analysis and program analysis.
This question has been studied in our previous work [12].
We proposed a tool named ConfMapper to accomplish the
automated mapping from the configuration options to the
relevant program variables without needing to understand the
complicated semantic context in the source code.

B. Inferring by Name-based Analysis

As discussed in Section II, the naming convention of most
configuration options makes it possible for us to perform
text processing and extract semantic information. However,
many difficulties still exist in the implementation of name-
based analysis. For instance, a keyword might reflect different
configuration option types, and a name might contain several
keywords that reflect different types, so how can we use
the semantic information to infer the type in these cases?
In ConfTypelnferer, we have come up with a scoring model
to choose the most likely type. Specifically, we divide the
name-based analysis into three steps. First, we separate the

N\

4 i
i ConfTypelnferer
! .
1

configuration i configuration type inferer
file »| file parser H4 option name
1
— ! AST

i
1
1
1

pair P —
source code e ConfMapper H <option,variable>
¥/_\ name-based

analysis

configuration
type verifier »| option type

analysis

| ——

Extraction Mapping

Inferring Verifying

Fig. 5. The architecture of ConfTypelnferer.

configuration-option names into words by text processing, and
establish a dictionary for each configuration option type, with
the words ranked according to their frequency. Second, we
use the scoring model to infer the configuration option type.
Third, infer the enumeration type using AST analysis.

1) Word Segmentation and Dictionary Establishment:
Based on the naming convention for the configuration option,
we use uppercase letters, underscore (“_), dot (*.”), and
hyphen (“—”) as separators to get words contained in the
configuration-option name. We build a dictionary for each
configuration option type by categorizing the words according
to different types. In each dictionary, these words are ranked
by their frequency of occurrence.

2) Score Model: As a name might contain several key-
words, which reflect different types, and a keyword might
reflect different configuration option type, the score model is
described in (1).

n
5CoTC1ype = E SCOT€freq * SCOTCorder L <1< (1)

word;

Here n means the number of keywords in an option name,
word; represents the ith keyword, and scoregyp., SCOIefyeq,
and score,,4. mean the total score for a certain configuration
option type, the frequency score for a matched word, and the
order score for a matched word, respectively. The type with
highest score is the inference result.

More concretely, scores,.q is set in the step for dictionary
establishment, according to the word’s frequency of occur-
rence. In our tool, we set three score levels using the function
described in (2). The x is the frequency rank of a word.

3 1<z<5h
scorefreq =2 6<z<10 2)
1 xz>11

The score,,qer is set according to the word’s position in
a configuration option name. We find that those words at
the front of a configuration option name are usually used to
describe the words following them, which means that the last
word is most likely to reflect its type, e.g., “listen_addresses”

) (k) (i)
(3)+ (o)+ (3)=
(31)+ (o J+(0)=
Co)+r o)+ ()=
o)+)+)=

Fig. 6. An example of calculation of score;ype

“ssl_cert_file,” and “temp_buffers.” This is a common habit
when people are naming a thing. However, there are excep-
tions, such as if the programmer has a strange naming habit,
which would affect our inference result. In our tool, we set
two score levels and, usually, the last word of a name has a
higher score.

Fig. 6 gives an example of the calculation of scoreyp.. The
configuration-option name “max_file_size” contains three key-
words that reflect different types, among which the keyword
“max” could reflect further different types including memory,
time, and count. After doing the calculation shown in Fig. 6,
we can infer the correct type.

C. Inferring Enumeration Type

As mentioned in Section II, it is not enough to infer the
configuration option type only by name-based analysis. We
tried to use the program analysis method to address this
issue. In order to infer the options for enumeration type, we
manually analyzed their program variables in the source code.
We find that programmers assign values to these variables by a
similar pattern. In general, most software does this assignment
by specific structures or functions whose name contains the
configuration option or its variable, and the body of structures
or functions contains many macros and strings related to the
configuration option. This assignment pattern can be located
and identified by AST analysis. In addition, we can also obtain
all possible values of an enumeration type option by AST
analysis.

D. Verifying the Inferred Type

We verify options’ types by checking their variables’ data
type. This step is mainly based on our finding relating to the
close connection between the configuration option type and
the relevant program variables data type. For example, for a
path type option, its variable must a string, while a memory
type might have a variable of integer or float-point number
type. In the mapping phase, we have determined the pairs of
option and variable, and the data type of the variable can be
obtained by a data-flow analysis.

E. Constraints Enhancement

We envisage that ConfTypelnferer is the first step towards a
generic and systematic solution to prevent configuration errors.
With the option type inferred, we can define constraints for a
specific type, which can be used for misconfiguration checking
in source code and configuration files.

1) Comments Enhancement in Configuration files: Com-
menting configuration files is a common practice in software
development; the comments are direct, descriptive, and easy-
to-understand, which can give users guidance on configuring
correctly. However, we have found that the amount of useful
information contained in comments is very limited in current
software. With the constraints for specific option types, we can
enhance comments and provide clues for user’s configuration.

2) Misconfiguration Checking in Source Code: One reason
for the difficulty in troubleshooting misconfigurations is the
lack of diagnostic information. We can use the option type
inferred to enhance the configuration constraints in the source
code, which can be used for misconfiguration checking, thus
improving the system’s reliability and preventing many poten-
tial configuration errors.

V. EVALUATION

In this section, we discuss the comprehensive experiments
conducted to evaluate the effectiveness of ConfTypelnferer on
two aspects: the accuracy of type inference and the effective-
ness of misconfiguration prevention.

A. Accuracy of Type Inference

As we completed our study, we chose eight popular open-
source software projects to evaluate the accuracy of type
inference. Their information is shown in Table II. Note that
there are four software projects(MySQL, Redis, Lighthttpd,
and Postfix) that are not used for building dictionaries, and
we chose them to verify that our name-based method works
well on other C/C++ software projects. We get all the options
and their correct types by manually viewing the software
documentation, configuration files, and even the source code.

As Fig. 7 shows, the accuracy of type inference in open-
source software projects can reach over 90%. This is an
acceptable result considering the large number of configuration
options. The results for MySQL, Redis, Lighthttpd, and Postfix
verify that this method works well on other C/C++ software
projects.

TABLE II
LIST OF SOFTWARE FOR EXPERIMENTS
Software Description | Software Description
PostgreSQL Database Nginx Reverse proxy
Lighthttpd Web server Squid Web delivery
MySQL Database Redis Database
Httpd Web server Postix Mail proxy server

90.4% 90.8% 92.5% . 91.6% 91.7%

09 +
0.8
0.7
0.6
0.5 7
04
03
0.2 +
0.1 7

o0+ . .
Lighthttp Redis

PostgresQl Squid Nginx Httpd

MysaL Postfix

Fig. 7. Accuracy of type inference in open-source software. The percentages
in the figure represent the correct inference percentages for the configuration
options.

B. Effectiveness of Misconfiguration Prevention

To evaluate ConfTypelnferer’s effectiveness in misconfig-
uraiton prevention, we performed two experiments with four
software projects: PostgreSQL, Httpd, Nginx, and Postfix. In
the first experiment, we injected random errors into correct-
ly configured systems and used ConfTypelnferer to detect
the injected errors. In the second experiment, we applied
ConfTypelnferer to check against real-world misconfiguration
problems.

1) Injected Misconfigurations: For each software project,
we randomly injected 20 errors with SPEX-INJ [15] into the
configuration files. SPEX-INJ automatically generates config-
uration errors by violating the constraints. As Table III shows,
we detected most constraint violations using the option’s
inferred type.

2) Real-world Misconfigurations: We searched forums, fre-
quently asked questions (FAQs) pages, and configuration docu-
ments to find actual configuration problems that users have ex-
perienced with our target software projects. In total, we chose
eight representative misconfigurations to reproduce. These
misconfigurations are type-related and caused by errors in the
configuration files. We tried to detect these misconfigurations,
given the option type inferred. Table IV lists the configuration
errors for each software projects, as well as the detection

TABLE III
THE NUMBER OF INJECTED MISCONFIGURATIONS DETECTED BY
CONFTYPEINFERER
Software Total | Detected
PostgreSQL 20 16
Httpd 20 13
Nginx 20 12
Postfix 20 15

TABLE IV
DETECTION OF REAL-WORLD MISCONFIGURATIONS

ID Software Problem Description Success
1 PostgreSQL Logging is not performed because log_directory (path) is set incorrectly Y
2 PostgreSQL Query operation is very slow due do the work_mem (memory) option being set too low N
3 Httpd Website visitors are unable to upload files due to the wrong permission (permission) being set N
4 Httpd Unable resolve PHP code due to setting the AddType (enumeration) option as a freedom string Y
5 Nginx File creation error due to datadir’s wrong owner (username) Y
6 Nginx Failed to connect to the proxy server due to the wrong proxy_pass (url) being set Y
7 Postfix Cannot deliver mail locally due to the mydestination (email) option being set incorrectly Y
8 Postfix Cannot forward user’s email to the Internet due to the relayhost (email) option is set incorrectly Y

results. Table IV shows many (6/8) misconfigurations can be
prevented by type checking. However, some misconfigurations
cannot be prevented even when the type is inferred. For
example, for Problem ID 3, you need more detailed constraints
to set a memory option. This limit has inspired our future work
for inferring more detailed constraints based on the inferred

type.
VI. RELATED WORK

To prevent misconfigurations, some research detects mis-
configurations by constraint verification. ECC Fixer [16] infers
configuration constraints by program analysis and detects the
configuration violations, it designs an algorithm that automati-
cally generates range fixes for a violated constraint. SPEX [15]
infers configuration constraints from source codes, and use
these constraints to harden systems against configuration errors
and to detect error-prone designs. These methods all neglect
the semantic information of configuration-option names, which
can complement program analysis.

The identifier names chosen by developers convey informa-
tion about the semantics of a program. This information can
complement traditional program analyses in various software
engineering tasks, such as bug finding, code completion, and
documentation. Recent work uses identifier names to infer API
specifications [17], to synthesize code completions [18], and
to detect incorrectly ordered method arguments of the same
type [19].

VII. CONCLUSION

Misconfigurations have become a major cause of software
failures. In this paper, we have explored a name-based method
called ConfTypelnferer to automatically infer the type of
a configuration option, which can help users to configure
correctly and check their settings, avoiding many unnecessary
misconfigurations. We manually studied several popular open-
source software projects and research on the classification and
naming conventions for configuration option. Based on these
findings, we designed and implemented the ConfTypelnferer.
We conducted comprehensive experiments to evaluate the
effectiveness of ConfTypelnferer.

ACKNOWLEDGMENT

This paper is partially supported by NSFC No. 61532007,
No. 61690203, and No. 61402496.

[1]
[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

(17]

[18]

[19]

REFERENCES

L. Barroso, J. Clidaras, and U. Hoelzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,” vol. 8,
no. 3, p. 154, 2009.

A. Rabkin and R. Katz, “How hadoop clusters break,” IEEE Software,
vol. 30, no. 4, pp. 88-94, 2013.

MySQL, http://www.mysql.com/.

Httpd, http://httpd.apache.org/.

Y. Y. Su, M. Attariyan, and J. Flinn, “Autobash: improving configuration
management with operating system causality analysis.” in ACM Sympo-
sium on Operating Systems Principles 2007, SOSP 2007, Stevenson,
Washington, Usa, October, 2007, pp. 362-371.

J. Mickens, M. Szummer, and D. Narayanan, “Snitch: interactive deci-
sion trees for troubleshooting misconfigurations,” in Usenix Workshop
on Tackling Computer Systems Problems with Machine Learning Tech-
niques, 2007, p. 8.

M. Attariyan and J. Flinn, “Automating configuration troubleshooting
with dynamic information flow analysis,” in Usenix Conference on
Operating Systems Design and Implementation, 2010, pp. 1-11.

Z. Dong, M. Ghanavati, and A. Andrzejak, “Automated diagnosis of
software misconfigurations based on static analysis,” in /EEE Interna-
tional Symposium on Software Reliability Engineering Workshops, 2013,
pp- 162-168.

T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy,
“Early detection of configuration errors to reduce failure damage,”
in Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’16. Berkeley, CA,
USA: USENIX Association, 2016, pp. 619-634. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3026877.3026925

J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, EnCore: exploiting system environment and correlation infor-
mation for misconfiguration detection. ACM, 2014.

A. Rabkin and R. Katz, “Static extraction of program configuration
options,” in International Conference on Software Engineering, 2011,
pp. 131-140.

S. Zhou, X. Liu, S. Li, W. Dong, X. Liao, and Y. Xiong, “Confmapper:
automated variable finding for configuration items in source code,” in
International Conference on Software Quality, Reliability and Security-
Companion, 2016.

Clang, https://clang.llvm.org/.

LLVM, https://www.llvm.org/.

T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy, “Do not blame users for misconfigurations,” in Twenty-
Fourth ACM Symposium on Operating Systems Principles, 2013, pp.
244-259.

Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, “Generating range fixes
for software configuration,” in International Conference on Software
Engineering, 2012, pp. 58-68.

R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar,
“Inferring method specifications from natural language api descriptions,”
in International Conference on Software Engineering, 2012, pp. 815—
825.

V. Raychev, M. Vecheyv, and E. Yahav, “Code completion with statistical
language models,” Acm Sigplan Notices, vol. 49, no. 6, pp. 419-428,
2014.

M. Pradel and T. R. Gross, “Name-based analysis of equally type-
d method arguments,” IEEE Transactions on Software Engineering,
vol. 39, no. 39, pp. 1127-1143, 2013.

