Czech J. Anim. Sci., 2015, 60(8):351-358 | DOI: 10.17221/8404-CJAS

Effects of bovine colostrum on performance, survival, and immunoglobulin status of suckling piglets during the first days of lifeOriginal Paper

M. Viehmann1, C. Unterweger1, M. Ganter2, B.U. Metzler-Zebeli1, M. Ritzmann3, I. Hennig-Pauka1
1 University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
2 Clinic for Swine and Small Ruminants, University of Veterinary Medicine, Hanover, Germany
3 Clinic for Swine, Ludwig-Maximilians-University, Oberschleissheim, Germany

Supplementation of bovine colostrum (BC) has shown to improve growth performance, intestinal development, and immune response in early-weaned pigs. Little is known about whether BC may have similar effects in neonatal piglets. In the present study, the effect of BC supplementation on mortality, growth performance, and blood parameters (plasma proteins and white blood count) of suckling piglets in the first 10 days of life was investigated under practical conditions with special emphasis on low birth weight piglets. In total, 258 newborn piglets from 30 multiparous sows in a commercial breeding unit were randomly assigned to two different treatment groups. Piglets received either 1 ml of BC orally on days 1-3 of life (group BC, n = 128) or 1 ml of saline (0.9%) (control (CON) group; n = 130). Body weight was measured on days 1, 4, and 10 of life. Blood was collected on days 1 and 4 from 60 piglets per group. No differences in mortality, body weight, and average daily weight gain were observed between treatment groups in days 1-10. However, compared to CON, particularly in low birth weight piglets the administration of BC supported (P < 0.01) their survival. Group BC exhibited lower plasma total protein (P = 0.03) and beta-globulin (P = 0.02) concentrations compared to group CON. In conclusion, BC improved low and normal birth weight piglets' survival during their first 10 days of life. Further research is needed to clarify whether the survival rate is related to earlier gut closure indicated by lower plasma protein levels, which might be beneficial due to a lower uptake of potential antigenic substances.

Keywords: bovine colostrum supplement; growth performance; field trial; nursery pig; survivability

Published: August 31, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Viehmann M, Unterweger C, Ganter M, Metzler-Zebeli BU, Ritzmann M, Hennig-Pauka I. Effects of bovine colostrum on performance, survival, and immunoglobulin status of suckling piglets during the first days of life. Czech J. Anim. Sci.. 2015;60(8):351-358. doi:�10.17221/8404-CJAS.
Download citation

References

  1. Baxter E.M., Rutherford K.M.D., D'Eath R.B., Arnott G., Turner S.P., Sandoe P., Moustsen V.A., Thorup F., Edwards S.A, Lawrence A. (2013): The welfare implications of large litter size in the domestic pig II: management factors. Animal Welfare, 22, 219-238. Go to original source...
  2. Bjornvad C.R., Thymann T., Deutz N.E., Burrin D.G., Jensen S.K., Jensen B.B., Molbak L., Boye M., Larsson L.I., Schmidt M., Michaelsen K.F., Sangild P.T. (2008): Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition. American Journal of Physiology, Gastrointestinal and Liver Physiology, 295, G1092-G1103. Go to original source... Go to PubMed...
  3. Boudry C., Dehoux J.-P., Portetelle D., Buldgen A. (2008a): Bovine colostrum as a natural growth promotor for newly weaned piglets: a review. Biotechnology, Agronomy, Society and Environment, 12, 157-170.
  4. Boudry C., Dehoux J.P., Wavreille J., Portetelle D., Thewis A., Buldgen A. (2008b): Effect of a bovine colostrum whey supplementation on growth performance, faecal Escherichia coli population and systemic immune response of piglets at weaning. Animal, 2, 730-737. Go to original source... Go to PubMed...
  5. Boudry C., Dehoux J.-P., Colinet F.G., Wavreille J., Portetelle D., Beckers Y., Thewis A. (2010): Effect of bovine colostrum on the serum insulin-like growth factor-I (IGF-I), the IGF binding proteins-2 and -3 and the thyroid hormones in weaning piglets. Archiv Tierzucht, 53, 677-690. Go to original source...
  6. Bridger J.C., Brown J.F. (1981): Development of immunity to porcine rotavirus in piglets protected from disease by bovine colostrum. Infection and Immunity, 31, 906-910. Go to original source... Go to PubMed...
  7. Cabrera R.A., Lin X., Campbell J.M., Moeser A.J., Odle J. (2012): Influence of birth order, birth weight, colostrum and serum immunoglobulin G on neonatal piglet survival. Journal of Animal Science and Biotechnology, 3, 42. Go to original source... Go to PubMed...
  8. Coalson J.A., Lecce J.G. (1973): Herd differences in the expression of fatal diarrhea in artificially reared piglets weaned after 12 hours vs. 36 hours of nursing. Journal of Animal Science, 36, 1114-1121. Go to original source... Go to PubMed...
  9. de Lange C.F.M., Pluske J., Gong J., Nyachoti C.M. (2010): Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science, 134, 124-134. Go to original source...
  10. Devillers N., Farmer C., Le Dividich J., Prunier A. (2007): Variability of colostrum yield and colostrum intake in pigs. Animal, 1, 1033-1041. Go to original source... Go to PubMed...
  11. Devillers N., Le Dividich J., Prunier A. (2011): Influence of colostrum intake on piglet survival and immunity. Animal, 5, 1605-1612. Go to original source... Go to PubMed...
  12. Dyck G.E., Swierstra E.E. (1987): Causes of piglet death from birth to weaning. Canadian Journal of Animal Science, 67, 543-547. Go to original source...
  13. Gallagher D.P., Cotter P.F., Mulvihill D.M. (1997): Porcine milk proteins: a review. International Dairy Journal, 7, 99-118. Go to original source...
  14. Gomez G.G., Phillips O., Goforth R.A. (1998): Effect of immunoglobulin source on survival, growth, and hematological and immunological variables in pigs. Journal of Animal Science, 76, 1-7. Go to original source... Go to PubMed...
  15. Herpin P., Le Dividich J., Van Os M. (1992): Contribution of colostral fat to thermogenesis and glucose homeostasis in the newborn pig. Journal of Developmental Physiology, 17, 133-141. Go to PubMed...
  16. Herpin P., Damon M., Le Dividich J. (2002): Development of thermoregulation and neonatal survival in pigs. Livestock Production Science, 78, 25-45. Go to original source...
  17. Hoy S., Lutter C., Puppe B., Wahner M. (1997): The influence of early postnatal piglet vitality on live weight gain and mortality. Animal Research and Development, 45, 89-101.
  18. Huang Y., Olson D.J., Gordon J.R., Middleton D.M., Simko E. (2012): Plasma protein profiles of neonatal pigs before and after suckling. The Canadian Journal of Veterinary Research, 76, 1-7.
  19. Huguet A., Seve B., Le Dividich J., Le Huerou-Luron I. (2006): Effects of a bovine colostrum-supplemented diet on some gut parameters in weaned piglets. Reproduction Nutrition Development, 46, 167-178. Go to original source... Go to PubMed...
  20. Huguet A., Le Dividich J., Le Huerou-Luron I. (2011): Improvement of growth performance and sanitary status of weaned piglets fed a bovine colostrum-supplemented diet. Journal of Animal Science, 90, 1513-1520. Go to original source... Go to PubMed...
  21. Jensen A.R., Elnif J., Burrin D.G., Sangild P.T. (2001): Development of intestinal immunoglobulin absorption and enzyme activities in neonatal pigs is diet dependent. Journal of Nutrition, 131, 3259-3265. Go to original source... Go to PubMed...
  22. Jensen M.L., Sangild P.T., Lykke M., Schmidt M., Boye M., Jensen B.B., Thymann T. (2013): Similar efficacy of human banked milk and bovine colostrum to decrease incidence of necrotizing enterocolitis in preterm piglets. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 305, R4-R12. Go to original source... Go to PubMed...
  23. King M.R., Morel P.C.H., Revell D.K., Pluske J.R., Birtles M.J. (2007): Dietary bovine colostrum increases villus height and decreases small intestine weight in early-weaned pigs. Asian-Australasian Journal of Animal Sciences, 21, 567-573. Go to original source...
  24. Klobasa F., Werhahn E., Butler J.E. (1981): Regulation of humoral immunity in the piglet by immunoglobulins of maternal origin. Research in Veterinary Science, 31, 195-206. Go to original source... Go to PubMed...
  25. Kushner I. (1982): The phenomenon of the acute phase response. Annals of the New York Academy of Sciences, 389, 39-48. Go to original source... Go to PubMed...
  26. Le Dividich J., Esnault T., Lynch B., Hoo-Paris R., Castex C., Peiniau J. (1991): Effect of colostral fat level on fat deposition and plasma metabolites in the newborn pig. Journal of Animal Science, 69, 2480-2488. Go to original source... Go to PubMed...
  27. Le Dividich J., Rooke J.A., Herpin P. (2005): Nutritional and immunological importance of colostrum for the new-born pig. Journal of Agricultural Science, 143, 469-485. Go to original source...
  28. Lin C., Mahan D.C., Wu G., Kim S.W. (2009): Protein digestibility of porcine colostrum by neonatal pigs. Livestock Science, 121, 182-186. Go to original source...
  29. Machado-Neto R., Graves C.N., Curtis S.E. (1987): Immunoglobulins in piglets from sows heat-stressed prepartum. Journal of Animal Science, 65, 445-455. Go to original source... Go to PubMed...
  30. Moller H.K., Thymann T., Fink L.N., Frokiaer H., Kvistgaard A.S., Sangild P.T. (2011): Bovine colostrum is superior to enriched formulas in stimulating intestinal function and necrotising enterocolitis resistance in preterm pigs. British Journal of Nutrition, 105, 44-53. Go to original source... Go to PubMed...
  31. Muller R., Thorup F., Hansen C. (2012): Supplementing new born piglets with 50 ml sow colostrum failed to influence piglet survival. In: Proc. 4th European Symposium of Porcine Health Management, Bruges, Belgium, 118.
  32. Muns R., Silva C., Manteca X., Gasa J. (2014): Effect of crossfostering and oral supplementation with colostrums on performance of newborn piglets. Journal of Animal Science, 92, 1193-1199. Go to original source... Go to PubMed...
  33. Pakkanen R., Aalto J. (1997): Growth factors and antimicrobial factors of bovine colostrum. International Dairy Journal, 7, 285-297. Go to original source...
  34. Porter P. (1969): Transfer of immunoglobulins IgG, IgA and IgM to lacteal secretions in the parturient sow and their absorption by the neonatal piglet. Biochimica et Biophysica Acta, 181, 381-392. Go to original source... Go to PubMed...
  35. Quesnel H., Farmer C., Devillers N. (2012): Colostrum intake: influence on piglet performance and factors of variation. Livestock Science, 146, 105-114. Go to original source...
  36. Rutherford K., Baxter E., D'Eath R., Turner S., Arnott G., Roehe R., Ask B., Sandoe P., Mousten V., Thorup F., Edwards S., Berg P., Lawrence A. (2013): The welfare implications of large litter size in the domestic pig I: biological factors. Animal Welfare, 22, 199-218. Go to original source...
  37. Sangild P.T. (2003): Uptake of colostral immunoglobulins by the compromised newborn farm animal. Acta Veterinaria Scandinavica, Supplementum 98, 105-122. Go to original source... Go to PubMed...
  38. Tuchscherer M., Puppe B., Tuchscherer A., Tiemann U. (2000): Early identification of neonates at risk: traits of newborn piglets with respect to survival. Theriogenology, 54, 371-388. Go to original source... Go to PubMed...
  39. Wagstrom E.A., Yoon K.J., Zimmerman J.J. (2000): Immune components in porcine mammary secretions. Viral Immunology, 13, 383-397. Go to original source... Go to PubMed...
  40. Westrom B.R., Svendsen J., Ohlsson B.G., Tagesson C., Karlsson B.W. (1984): Intestinal transmission of macromolecules (BSA and FITC-labelled dextrans) in the neonatal pig. Influence of age of piglet and molecular weight of markers. Biology of the Neonate, 46, 20-26. Go to original source... Go to PubMed...
  41. White K.R., Anderson D.M., Bate L.A. (1996): Increasing piglet survival through an improved farrowing management protocol. Canadian Journal of Animal Science, 491-495. Go to original source...
  42. Xu R., Wang F., Zhang S. (2000): Postnatal adaptation of the gastrointestinal tract in neonatal pigs: a possible role of milk-borne growth factors. Livestock Production Science, 66, 95-107. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.