2014 Volume E97.B Issue 2 Pages 495-503
In this study, a new method for Decode-Distributed Beamforming (D-DB) relaying is proposed. Each relay node decodes the source symbol by maximum likelihood detection. The detected symbol is entered into the stored Quantized Equal-gain (QE) codebook, where the label of the phase region is provided by a feedback link from the destination node. Therefore, the proposed relay network forms a Decode-Distributed QE (D-DQE) relay network. The performances of the D-DQE codebooks are examined by Monte-Carlo simulations, in which the feedback links and channel estimations are assumed to be error-free. The simulation results reveal that the symbol error rates of the D-DQE relay system improve the error performance of the QE codebooks when relay nodes are close to the source node. When error-free feedback bits are provided, the performance of the proposed D-DQE is better than that of Alamouti's Decode-Distributed Space-Time Coding (D-DSTC) relay network. The weakest relays are rejected to improve the performance of the D-DQE codebooks and reduce the number of feedback bits. This relay network is called Decode-Relay Rejection for Distributed Beamforming (D-RRDB) relay networks.