Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 14, 2019

An overview on role of some trace elements in human reproductive health, sperm function and fertilization process

  • Mahdiyeh Mirnamniha , Fereshteh Faroughi , Eisa Tahmasbpour EMAIL logo , Pirooz Ebrahimi and Asghar Beigi Harchegani EMAIL logo

Abstract

Human semen contains several trace elements such as calcium (Ca), copper (Cu), manganese (Mn), magnesium (Mg), zinc (Zn) and selenium (Se) which are necessary for reproductive health, normal spermatogenesis, sperm maturation, motility and capacitation, as well as normal sperm function. In this review, the potential role of these trace elements in male reproductive health, normal function of spermatozoa and fertility potency were considered. We selected and reviewed articles that considered crucial roles of trace elements in human sperm function and fertility. Ca is essential for sperm motility and its hyperactivation, sperm capacitation and acrosome reaction, as well as sperm chemotaxis. Sodium (Na) and potassium (K) are involved in sperm motility and capacitation. Mg is necessary for normal ejaculation, spermatogenesis and sperm motility. Zn is one of the most significant nutrients in human semen. Seminal deficiency of Zn can be associated with delayed testicular development, impaired spermatogenesis, deficiency of sex hormones, oxidative stress and inflammation, and apoptosis. Se is another significant element which has antioxidative properties and is essential for spermatogenesis and the maintenance of male fertility. Mn is a potent stimulator for sperm motility; however, increased level of seminal plasma Se can be toxic for sperm. Like Se, Cu has antioxidative properties and has a positive effect on sperm parameters. Decreased level of these trace elements can negatively affect human reproductive health, semen quality, sperm normal function and as the result, fertility potency in men. Measurement of these trace elements in men with idiopathic infertility is necessary.


Corresponding authors: Dr. Eisa Tahmasbpour, Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran, Phone: 0021-9111193051 and Dr. Asghar Beigi Harchegani, Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19945-581, Tehran, Iran
aCo-correspond author.

Acknowledgments

We thank Dr. Eisa Tahmasbpour at Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran for his assistance and reviewing the manuscript.

  1. Research funding: None declared.

  2. Conflict of interest: All authors approve the manuscript and no competing interest was declared by any of the authors.

  3. Informed consent: Not applicable.

  4. Ethical approval: The conducted research is not related to either human or animal use.

References

1. La Vignera S, Vicari E, Condorelli RA, D’Agata R, Calogero AE. Male accessory gland infection and sperm parameters (review). Int J Androl 2011;34(5 Pt 2):e330–47.10.1111/j.1365-2605.2011.01200.xSearch in Google Scholar PubMed

2. Thoma ME, McLain AC, Louis JF, King RB, Trumble AC, Sundaram R, et al. Prevalence of infertility in the United States as estimated by the current duration approach and a traditional constructed approach. Fertil Steril 2013;99(5):1324–31e1.10.1016/j.fertnstert.2012.11.037Search in Google Scholar PubMed PubMed Central

3. De Braekeleer M, Dao TN. Cytogenetic studies in male infertility: a review. Hum Reprod 1991;6(2):245–50.10.1093/oxfordjournals.humrep.a137315Search in Google Scholar

4. Kovac JR, Pastuszak AW, Lamb DJ. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril 2013;99(4):998–1007.10.1016/j.fertnstert.2013.01.111Search in Google Scholar PubMed PubMed Central

5. Colagar AH, Marzony ET, Chaichi MJ. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr Res 2009;29(2):82–8.10.1016/j.nutres.2008.11.007Search in Google Scholar PubMed

6. Colagar AH, Marzony ET. Ascorbic Acid in human seminal plasma: determination and its relationship to sperm quality. J Clin Biochem Nutr 2009;45(2):144–9.10.3164/jcbn.08-251Search in Google Scholar PubMed PubMed Central

7. Colagar AH, Jorsaraee GA, Marzony ET. Cigarette smoking and the risk of male infertility. Pak J Biol Sci 2007;10(21):3870–4.10.3923/pjbs.2007.3870.3874Search in Google Scholar PubMed

8. Hosseinzadeh Colagar A, Pouramir M, Tahmasbpour Marzony E, Jorsaraei EGA. Relationship between seminal malondialdehyde levels and sperm quality in fertile and infertile men. Brazilian Arch Biol Technol 2009;52(6):1387–92.10.1590/S1516-89132009000600010Search in Google Scholar

9. Tahmasbpour E, Balasubramanian D, Agarwal A. A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART). J Assist Reprod Genet 2014;31(9):1115–37.10.1007/s10815-014-0280-6Search in Google Scholar PubMed PubMed Central

10. Guzikowski W, Szynkowska MI, Motak-Pochrzest H, Pawlaczyk A, Sypniewski S. Trace elements in seminal plasma of men from infertile couples. Arch Med Sci 2015;11(3):591–8.10.5114/aoms.2015.52363Search in Google Scholar PubMed PubMed Central

11. Marzec-Wroblewska U, Kaminski P, Lakota P. Influence of chemical elements on mammalian spermatozoa. Folia Biol 2012;58(1):7–15.Search in Google Scholar

12. Schmid TE, Grant PG, Marchetti F, Weldon RH, Eskenazi B, Wyrobek AJ. Elemental composition of human semen is associated with motility and genomic sperm defects among older men. Hum Reprod 2013;28(1):274–82.10.1093/humrep/des321Search in Google Scholar

13. Wdowiak A, Bakalczuk G, Bakalczuk S. Evaluation of effect of selected trace elements on dynamics of sperm DNA fragmentation. Postepy Hig Med Dosw 2015;69:1405–10.Search in Google Scholar

14. Tvrda E, Lukac N, Schneidgenova M, Lukacova J, Szabo C, Goc Z, et al. Impact of seminal chemical elements on the oxidative balance in bovine seminal plasma and spermatozoa. J Vet Med 2013;2013:125096.10.1155/2013/125096Search in Google Scholar

15. Vickram AS, Ramesh PM, Sridharan TB. Effect of various biomolecules for normal functioning of human sperm for fertilization: a review. Int J Pharm Pharm Sci 2012;4:18–24.Search in Google Scholar

16. Alvarez L, Dai L, Friedrich BM, Kashikar ND, Gregor I, Pascal R, et al. The rate of change in Ca(2+) concentration controls sperm chemotaxis. J Cell Biol 2012;196(5):653–63.10.1083/jcb.201106096Search in Google Scholar

17. Valsa J, Skandhan K, Gusani P, Khan PS, Amith S, Gondalia M. Effect of daily ejaculation on semen quality and calcium and magnesium in seme. Rev Int Androl 2013;11(3):94–9.10.1016/j.androl.2013.03.001Search in Google Scholar

18. Blomberg Jensen M, Gerner Lawaetz J, Andersson AM, Petersen JH, Nordkap L, Bang AK, et al. Vitamin D deficiency and low ionized calcium are linked with semen quality and sex steroid levels in infertile men. Hum Rep 2016;31(8):1875–85.10.1093/humrep/dew152Search in Google Scholar

19. Valsa J, Skandhan KP, Khan PS, Avni KP, Amith S, Gondalia M. Calcium and magnesium in male reproductive system and in its secretion. I. Level in normal human semen, seminal plasma and spermatozoa. Urologia 2015;82(3):174–8.10.5301/urologia.5000039Search in Google Scholar

20. Prien SD, Lox CD, Messer RH, DeLeon FD. Seminal concentrations of total and ionized calcium from men with normal and decreased motility. Fertil Steril 1990;54(1):171–2.10.1016/S0015-0282(16)53658-9Search in Google Scholar

21. Costa RR, Varanda WA, Franci CR. A calcium-induced calcium release mechanism supports luteinizing hormone-induced testosterone secretion in mouse Leydig cells. Am J Physiol Cell Physiol 2010;299(2):C316–23.10.1152/ajpcell.00521.2009Search in Google Scholar PubMed

22. Yoshida M, Yoshida K. Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol Hum Reprod 2011;17(8):457–65.10.1093/molehr/gar041Search in Google Scholar PubMed

23. Chung JJ, Navarro B, Krapivinsky G, Krapivinsky L, Clapham DE. A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nat Comm 2011;2:153.10.1038/ncomms1153Search in Google Scholar PubMed PubMed Central

24. Golpour A, Psenicka M, Niksirat H. Subcellular distribution of calcium during spermatogenesis of zebrafish, Danio rerio. J Morphol 2017;278(8):1149–59.10.1002/jmor.20701Search in Google Scholar PubMed

25. Talluri TR, Mal G, Ravi SK. Biochemical components of seminal plasma and their correlation to the fresh seminal characteristics in Marwari stallions and Poitou jacks. Vet World 2017;10(2):214–20.10.14202/vetworld.2017.214-220Search in Google Scholar

26. Skandhan KP, Mazumdar BN. Correlation of sodium and potassium in human seminal plasma with fertilizing capacity of normal, and infertile subjects. Andrologia 1981;13:147–54.10.1111/j.1439-0272.1981.tb00022.xSearch in Google Scholar

27. Gusani PH, Skandhan KP, Valsa C, Mehta YB. Sodium and potassium in normal and pathological seminal plasma. Acta Eur Fertil. 1988;19:333–6.Search in Google Scholar

28. Abdel-Rahman HA, El-Belely MS, Al-Qarawi AA, El-Mougy SA. The relationship between semen quality and mineral composition of semen in various ram breeds. Small Rumin Res 2000;38:45–9.10.1016/S0921-4488(00)00137-1Search in Google Scholar

29. Escoffier J, Krapf D, Navarrete F, Darszon A, Visconti PE. Flow cytometry analysis reveals a decrease in intracellular sodium during sperm capacitation. J Cell Sci 2012;125:473–85.10.1242/jcs.093344Search in Google Scholar

30. Hamad AR, Al-Daghistani HI, Shquirat WD, Abdel-Dayem M, Al-Swaifi M. Sodium, potassium, calcium and copper levels in seminal plasma are associated with sperm quality in fertile and infertile men. Biochem Pharmacol 2014;3:1–7.10.4172/2167-0501.1000141Search in Google Scholar

31. Garcia MA, Meizel S. Importance of sodium ion to the progesterone-initiated acrosome reaction in human sperm. Mol Reprod Dev 1996;45:513–20.10.1002/(SICI)1098-2795(199612)45:4<513::AID-MRD14>3.0.CO;2-XSearch in Google Scholar

32. Omu AE, Al-Badr AA, Dashti H, Oriowo MA. Magnesium in human semen: possible role in premature ejaculation. Arch Androl 2001;46:59–66.10.1080/01485010150211164Search in Google Scholar

33. Bassey IE, Essien OE, Udoh AE, Imo IU, Effiong IO. Seminal plasma, selenium, magnesium and zinc levels in infertile men. J Med Sci 2013;13:483–87.10.3923/jms.2013.483.487Search in Google Scholar

34. Kothari RP, Chaudhari AR. Zinc levels in seminal fluid in infertile males and its relation with serum free testosterone. J Clin Diag Res 2016;10(5):CC05–8.10.7860/JCDR/2016/14393.7723Search in Google Scholar

35. Croxford TP, McCormick NH, Kelleher SL. Moderate zinc deficiency reduces testicular Zip6 and Zip10 abundance and impairs spermatogenesis in mice. J Nutr 2011;141(3):359–65.10.3945/jn.110.131318Search in Google Scholar

36. Merker HJ, Gunther T. Testis damage induced by zinc deficiency in rats. J Trace Elem Med Biol 1997;11(1):19–22.10.1016/S0946-672X(97)80004-1Search in Google Scholar

37. Caggiano V, Schnitzler R, Strauss W, Baker RK, Carter AC, Josephson AS, et al. Zinc deficiency in a patient with retarded growth, hypogonadism, hypogammaglobulinemia and chronic infection. Am J Med Sci 1969;257(5):305–19.10.1097/00000441-196905000-00003Search in Google Scholar

38. Boukhris R. [Syndrome of hypogonadism, growth retardation and zinc deficiency: review, discussion and research prospects]. La Tunis Med 1971;3:145–51.Search in Google Scholar

39. Chu Q, Chi ZH, Zhang X, Liang D, Wang X, Zhao Y, et al. A potential role for zinc transporter 7 in testosterone synthesis in mouse Leydig tumor cells. Int J Mol Med 2016;37(6):1619–26.10.3892/ijmm.2016.2576Search in Google Scholar

40. Talevi R, Barbato V, Fiorentino I, Braun S, Longobardi S, Gualtieri R. Protective effects of in vitro treatment with zinc, d-aspartate and coenzyme q10 on human sperm motility, lipid peroxidation and DNA fragmentation. Reprod Biol Endocrinol 2013;11:81.10.1186/1477-7827-11-81Search in Google Scholar

41. Shalini S, Bansal MP. Role of selenium in regulation of spermatogenesis: involvement of activator protein 1. Biofactors 2005;23:151–62.10.1002/biof.5520230304Search in Google Scholar

42. Morbat MM, Hadi AM, Hadri DH. Effect of selenium in treatment of male infertility. Exp Tech Urol Nephrol 2018;1:1–4.10.31031/ETUN.2018.01.000521Search in Google Scholar

43. Akinloye O, Arowololu AO, Shittu OB, Adejuwon CA, Osotimehin B. Selenium status of idiopathic infertile Nigerian males. Biol Trace Elem Res 2005;104:9–18.10.1385/BTER:104:1:009Search in Google Scholar

44. Lafond JL, Sele B, Favier A. Concentration of selected metals in normal and pathological human seminal plasma. J Trace Elem Electrolytes Health Dis 1988;1:19–21.Search in Google Scholar

45. Li Y, Wu J, Zhou W, Gao E. Effects of manganese on routine semen quality parameters: results from a population-based study in China. BMC Publ Health 2012;12:919.10.1186/1471-2458-12-919Search in Google Scholar

46. Wirth JJ, Rossano MG, Daly DC, Paneth N, Puscheck E, Potter RC, et al. Ambient manganese exposure is negatively associated with human sperm motility and concentration. Epidemiology 2007;2:270–3.10.1097/01.ede.0000253939.06166.7eSearch in Google Scholar

47. Saleh BOM, Hussain NK, Majid AY, Thabet B, Fadhil KA. Status of zinc and copper concentrations in seminal plasma of male infertility and their correlations with various sperm parameters. Iraq Postgrad Med J 2008;7:76–80.Search in Google Scholar

48. Wong WY, Flik G, Groenen PM, Swinkels DW, Thomas CM, Copius-Peereboom JH, et al. The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reprod Toxicol 2001;15:131–6.10.1016/S0890-6238(01)00113-7Search in Google Scholar

49. Machal L, Chládek G, Straková E. Copper, phosphorus and calcium in bovine blood and seminal plasma in relation to semen quality. J Anim Feed Sci 2002;11:425–35.10.22358/jafs/67893/2002Search in Google Scholar

50. Abdul-Rasheed OF. Association between seminal plasma copper and magnesium levels with oxidative stress in iraqi infertile men. Oman Med J 2010;25:168–72.10.5001/omj.2010.51Search in Google Scholar

51. Knazicka Z, Tvrda E, Bardos L, Lukac N. Dose- and time-dependent effect of copper ions on the viability of bull spermatozoa in different media. J Environ Sci Health A Tox Hazard Subst Environ Eng 2012;47:1294–30.10.1080/10934529.2012.672135Search in Google Scholar

52. Wong WY, Flik G, Groenen PM, Swinkels DW, Thomas CM, Copius-Peereboom JH, et al. The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reprod Toxicol 2001;15(2):131–6.10.1016/S0890-6238(01)00113-7Search in Google Scholar

53. Abou-Shakra FR, Ward NI, Everard DM. The role of trace elements in male infertility. Fertil Steril 1989;52(2):307–10.10.1016/S0015-0282(16)60860-9Search in Google Scholar

54. Nishida S, Yamano S, Aono T. Exposure of human sperm to low calcium medium enhances fertilizing ability. Arch Androl 1996;36:145–53.10.3109/01485019608987091Search in Google Scholar PubMed

55. Beigi Harchegani A, Irandoost A, Mirnamniha M, Rahmani H, Tahmasbpour E, Shahriary A. Possible mechanisms for the effects of calcium deficiency on male infertility. Int J Fertil Steril 2019;12:267–72.Search in Google Scholar

56. Golpour A, Psenicka M, Niksirat H. Ultrastructural localization of intracellular calcium during spermatogenesis of Sterlet (Acipenser ruthenus). Microscopy and microanalysis. J Microscop Soc Amer, Microbeam Anal Soc, Microscop Soc Canada 2016;22(6):1155–61.10.1017/S1431927616011958Search in Google Scholar

57. Darszon A, Nishigaki T, Beltran C, Trevino CL. Calcium channels in the development, maturation, and function of spermatozoa. Physiol Rev 2011;91(4):1305–55.10.1152/physrev.00028.2010Search in Google Scholar PubMed

58. Amemiya K, Hirabayashi M, Ishikawa H, Fukui Y, Hochi S. The ability of whale haploid spermatogenic cells to induce calcium oscillations and its relevance to oocyte activation. Zygote 2007;15(2):103–8.10.1017/S0967199406004047Search in Google Scholar PubMed

59. Abdou HS, Villeneuve G, Tremblay JJ. The calcium signaling pathway regulates leydig cell steroidogenesis through a transcriptional cascade involving the nuclear receptor NR4A1 and the steroidogenic acute regulatory protein. Endocrinology 2013;154(1):511–20.10.1210/en.2012-1767Search in Google Scholar PubMed

60. Marquez B, Suarez SS. Different signaling pathways in bovine sperm regulate capacitation and hyperactivation. Biol Reprod 2004;70(6):1626–33.10.1095/biolreprod.103.026476Search in Google Scholar PubMed

61. Navarrete FA, Garcia-Vazquez FA, Alvau A, Escoffier J, Krapf D, Sanchez-Cardenas C, et al. Biphasic role of calcium in mouse sperm capacitation signaling pathways. J Cell Physiol 2015;230(8):1758–69.10.1002/jcp.24873Search in Google Scholar PubMed PubMed Central

62. Jimenez T, McDermott JP, Sánchez G, Blanco G. Na,K-ATPase α4 isoform is essential for sperm fertility. Proc Natl Acad Sci 2011;108:644–9.10.1073/pnas.1016902108Search in Google Scholar PubMed PubMed Central

63. Hyne RV, Higginson RE, Kohlman D, Lopata A. Sodium requirement for capacitation and membrane fusion during the guinea-pig sperm acrosome reaction. J Reprod Fertil 1984;70:83–94.10.1530/jrf.0.0700083Search in Google Scholar PubMed

64. Viski S, Szöllosi J, Kiss AS, Csikkel-Szolnoki A. Effects of magnesium on spermiogenesis. Magn: Curr Status New Dev. 1997:335–9.10.1007/978-94-009-0057-8_69Search in Google Scholar

65. Eliasson RCL. Magnesium in human seminal plasma. Invest Urol 1971;9:286–9.10.1007/BF02081857Search in Google Scholar

66. Lindholmer C, Glauman H. Zinc and magnesium in human male reproductive tract. Andrologie 1972;4:231–7.10.1111/j.1439-0272.1972.tb01549.xSearch in Google Scholar PubMed

67. Valsa J, Skandhan KP, Sahab Khan P, Avni KPS, Amith SMG. Calcium and magnesium in male reproductive system I. Level in normal human semen, seminal plasma and spermatozoa. Urologia 2013;80:1–6.10.5301/urologia.5000039Search in Google Scholar PubMed

68. Shquirat WD, Al-Daghistani HI, Hamad AR, Abdel-Dayem M, Al-Swaifi M. Zinc, manganese and magnesium in seminal fluid and their relationship to male infertility in Jordan. Int J Pharm Med Sci 2013;3:1–10.Search in Google Scholar

69. Prasad AS. Zinc deficiency. Br Med J 2003;326(7386):409–10.10.1136/bmj.326.7386.409Search in Google Scholar PubMed PubMed Central

70. Yamaguchi S, Miura C, Kikuchi K, Celino FT, Agusa T, Tanabe S, et al. Zinc is an essential trace element for spermatogenesis. Proc Natl Acad Sci U S A 2009;106(26):10859–64.10.1073/pnas.0900602106Search in Google Scholar PubMed PubMed Central

71. Ishizuka M, Ohtsuka E, Inoue A, Odaka M, Ohshima H, Tamura N, et al. Abnormal spermatogenesis and male infertility in testicular zinc finger protein Zfp318-knockout mice. Dev Growth Differ 2016;58(7):600–8.10.1111/dgd.12301Search in Google Scholar PubMed

72. Omu AE, Al-Azemi MK, Al-Maghrebi M, Mathew CT, Omu FE, Kehinde EO, et al. Molecular basis for the effects of zinc deficiency on spermatogenesis: an experimental study in the Sprague-Dawley rat model. Indian J Urol 2015;31(1):57–64.10.4103/0970-1591.139570Search in Google Scholar PubMed PubMed Central

73. Khan MS, Zaman S, Sajjad M, Shoaib M, Gilani G. Assessment of the level of trace element zinc in seminal plasma of males and evaluation of its role in male infertility. Int J Appl Basic Med Res 2011;1(2):93–6.10.4103/2229-516X.91152Search in Google Scholar

74. Saeed S, Khan FA, Rahman SB, Khan DA, Ahmad M. Biochemical parameters in evaluation of oligospermia. J Pakistan Med Assoc 1994;44(6):137–40.Search in Google Scholar

75. Sorensen MB, Stoltenberg M, Henriksen K, Ernst E, Danscher G, Parvinen M. Histochemical tracing of zinc ions in the rat testis. Mol Hum Reprod 1998;4(5):423–8.10.1093/molehr/4.5.423Search in Google Scholar

76. Beigi Harchegani A, Dahan H, Tahmasbpour E, Bakhtiari Kaboutaraki HAS. Effects of zinc deficiency on impaired spermatogenesis and male infertility: the role of oxidative stress, inflammation and apoptosis. Hum Fertil 2018;21:1–12.10.1080/14647273.2018.1494390Search in Google Scholar

77. Egwurugwu JN, Ifedi CU, Uchefuna RC, Ezeokafor EN, Alagwu EA. Effects of zinc on male sex hormones and semen quality in rats. Niger J Physiol Sci 2013;28(1):17–22.Search in Google Scholar

78. Zhao J, Dong X, Hu X, Long Z, Wang L, Liu Q, et al. Zinc levels in seminal plasma and their correlation with male infertility: a systematic review and meta-analysis. Sci Rep 2016;6:22386.10.1038/srep22386Search in Google Scholar

79. Chia SE, Ong CN, Chua LH, Ho LM, Tay SK. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J Androl 2000;21(1):53–7.10.1002/j.1939-4640.2000.tb03275.xSearch in Google Scholar

80. Agarwal A, Robo R, Jain N, Gutch M, Consil S, Kumar S. Oxidative stress determined through the levels of antioxidant enzymes and the effect of N-acetylcysteine in aluminum phosphide poisoning. Indian J Crit Care Med 2014;18(10):666–71.10.4103/0972-5229.142176Search in Google Scholar

81. Michalska-Mosiej M, Socha K, Soroczynska J, Karpinska E, Lazarczyk B, Borawska MH. Selenium, zinc, copper, and total antioxidant status in the serum of patients with chronic tonsillitis. Biol Trace Element Res 2016;173(1):30–4.10.1007/s12011-016-0634-2Search in Google Scholar

82. Ebisch IM, Thomas CM, Peters WH, Braat DD, Steegers-Theunissen RP. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum Reprod Update 2007;13(2):163–74.10.1093/humupd/dml054Search in Google Scholar

83. Laskey JW, Phelps PV. Effect of cadmium and other metal cations on in vitro Leydig cell testosterone production. Toxicol Appl Pharmacol 1991;108:296–306.10.1016/0041-008X(91)90119-YSearch in Google Scholar

84. Ursini F, Heim S, Kiess M, Maiorino M, Roveri A. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999;285:225–8.10.1126/science.285.5432.1393Search in Google Scholar PubMed

85. Hurst R, Bao YP, Ridley S. Phospholipid hydroperoxide cysteine peroxidase activity of human serum albumin. Biochem J 1999;338(Pt 3):723–8.10.1042/bj3380723Search in Google Scholar

86. Lerda D. Study of sperm characteristics in persons occupationally exposed to lead. Am J Ind Med 1992;22:567–71.10.1002/ajim.4700220411Search in Google Scholar PubMed

87. Scott R, MacPherson A, Yates RW, Hussain B, Dixon J. The effect of oral selenium supplementation on human sperm motility. Br J Urol 1998;82:76–8.10.1046/j.1464-410x.1998.00683.xSearch in Google Scholar PubMed

88. Keskes Ammar L, Feki Chakroun N, Rebai T, Sahnoun Z, Ghozzi HEA. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch Androl 2003;49:83–94.10.1080/01485010390129269Search in Google Scholar PubMed

89. Rezaeian Z, Yazdekhasti H, Nasri S, Rajabi Z, Fallahi P, Amidi F. Effect of selenium on human sperm parameters after freezing and thawing procedures. Asian Pac J Reprod 2016;5:462–6.10.1016/j.apjr.2016.11.001Search in Google Scholar

90. Seremak B, Udala J, Lasota B. Influence of selenium additive on ram semen freezing quality. Electron J Pol Agric Univ 1999;2:1–6.Search in Google Scholar

91. Zhou N, Xiao H, Li TK, Nur EKA, Liu LF. DNA damage-mediated apoptosis induced by selenium compounds. J Biol Chem 2003;278:29532–7.10.1074/jbc.M301877200Search in Google Scholar PubMed

92. Tajaddini S, Ebrahimi S, Behnam B, Bakhtiyari M, Joghataei MT, Abbasi M, et al. Antioxidant effect of manganese on the testis structure and sperm parameters of formalin-treated mice. Andrologia 46:246–53.10.1111/and.12069Search in Google Scholar PubMed

93. Bansal AK, Kaur AR. Cooperative functions of manganese and thiol redox system against oxidative stress in human spermatozoa. J Hum Reprod Sci 2009;2:76–80.10.4103/0974-1208.57227Search in Google Scholar PubMed PubMed Central

94. Cheema RS, Bansal AK, Bilaspuri GS. Manganese provides antioxidant protection for sperm cryopreservation that may offer new consideration for clinical fertility. Oxid Med Cell Longev 2009;2:152–9.10.4161/oxim.2.3.8804Search in Google Scholar PubMed PubMed Central

95. Adejuwon CA, Ilesanmi AO, Ode EO, Akinlade KS. Biophysical and biochemical analysis of semen in infertile Nigerian males. Afr J Med Med Sci 1996;3:217–9.Search in Google Scholar

96. Guiying L. The clinical effects of manganese. Foreign Med Fasc Med Geogr 2000;2:82–3.Search in Google Scholar

97. Xu X, He B, Zhao S. Relationships between the levels of Zn, Cu, Fe, Mn and Ni in seminal plasma and male infertility. J Ningxia Med Coll 1997;3:13–6.Search in Google Scholar

98. Gao Y, Jang Y, Lu J. Effects of manganese fume and dust on lipid peroxidation and antioxidant enzymes in blood of exposed male workers. Ind Hlth Occup Dis 2006;2:88–90.Search in Google Scholar

99. Zeng Q, Zhou B, Feng W, Wang YX, Liu AL, Yue J, et al. Associations of urinary metal concentrations and circulating testosterone in Chinese men. Reprod Toxicol 2013;41:109–14.10.1016/j.reprotox.2013.06.062Search in Google Scholar PubMed

100. El Mchichi B, Hadji A, Vazquez A, Leca G. P38 mapk and msk1 mediate caspase-activation in manganese-induced mitochondria-dependent cell death. Cell Death Differ 2007;14:1826–36.10.1038/sj.cdd.4402187Search in Google Scholar PubMed

101. Hirata Y. Manganese-induced apoptosis in pc12 cells. Neurotoxicology 2002;24:639–53.10.1016/S0892-0362(02)00215-5Search in Google Scholar

102. Oubrahim H, Chock PB, Stadtman ER. Manganese(II) induces apoptotic cell death in NIH3T3 cells via a caspase-12-dependent pathway. J Biol Chem 2002;227:20135–8.10.1074/jbc.C200226200Search in Google Scholar

103. Li Y, Sun L, Cai T, Zhang Y, Lv S, Wang Y. Alpha-synuclein overexpression during manganese-induced apoptosis in sh-sy5y neuroblastoma cells. Brain Res Bull 2010;81:428–33.10.1016/j.brainresbull.2009.11.007Search in Google Scholar

104. Liu XF, Zhang LM, Guan HN, Zhang ZW, Xu SW. Effects of oxidative stress on apoptosis in manganese-induced testicular toxicity in cocks. Food Chem Toxicol 2013;60:168–76.10.1016/j.fct.2013.07.058Search in Google Scholar

105. Akinloye O, Abbiyesuku FM, Oguntibeju OO, Arowojolu AO, Truter EJ. The impact of blood and seminal plasma zinc and copper concentrations on spermogram and hormonal changes in infertile Nigerian men. Reprod Biol Endocrinol 2011;11:83–98.10.1016/S1642-431X(12)60047-3Search in Google Scholar

106. Slivkova J, Popelkova M, Massanyi P, Toporcerova S, Stawarz R. Concentration of trace elements in human semen and relation to spermatozoa quality. J Environ Sci Health A Tox Hazard Subst Environ Eng 2009;44:370–5.10.1080/10934520802659729Search in Google Scholar PubMed

107. Jockenhövel F, Bals-Pratsch M, Bertram HP, Nieschlag E. Seminal lead and copper in fertile and infertile men. Andrologia 1990;22:503–511.10.1111/j.1439-0272.1990.tb02041.xSearch in Google Scholar

108. Skandhan KP. Review on copper in male reproduction and contraception. Rev Fr Gynecol Obstet 1992;87:594–8.Search in Google Scholar

109. Roblero L, Guadarrama A, Lopez T, Zegers-Hochschild F. Effect of copper ion on the motility, viability, acrosome reaction and fertilizing capacity of human spermatozoa in vitro. Reprod Fert Dev 1996;8:871–4.10.1071/RD9960871Search in Google Scholar PubMed

110. Wang YX, Wang P, Feng W, Liu C, Yang P, Chen YJ, et al. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity. Environ Pollut 2017;224:224–34.10.1016/j.envpol.2017.01.083Search in Google Scholar PubMed

Received: 2019-02-04
Accepted: 2019-04-28
Published Online: 2019-06-14
Published in Print: 2019-12-18

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2024 from https://www.degruyter.com/document/doi/10.1515/reveh-2019-0008/html
Scroll to top button