Abstract
The paper studies a higher order unfitted finite element method for the Stokes system posed on a surface in ℝ3. The method employs parametric Pk-Pk−1 finite element pairs on tetrahedral bulk mesh to discretize the Stokes system on embedded surface. Stability and optimal order convergence results are proved. The proofs include a complete quantification of geometric errors stemming from approximate parametric representation of the surface. Numerical experiments include formal convergence studies and an example of the Kelvin–Helmholtz instability problem on the unit sphere.
-
Funding: The authors T. Jankuhn and A. Reusken wish to thank the German Research Foundation (DFG) for financial support within the Research Unit ‘Vector- and tensor valued surface PDEs' (FOR 3013) with project No. RE 1461/11-1. M. Olshanskii and A. Zhiliakov were partially supported by NSF through the Division of Mathematical Sciences grants 1717516 and 2011444.
References
[1] M. Arroyo and A. DeSimone, Relaxation dynamics of fluid membranes, Phys. Rev. E 79 (2009), No. 3, 031915.10.1103/PhysRevE.79.031915Search in Google Scholar PubMed
[2] A. Bonito, A. Demlow, and M. Licht, A divergence-conforming finite element method for the surface Stokes equation, SIAM J. Numer. Anal., 58 (2020), No. 5, 2764–2798.10.1137/19M1284592Search in Google Scholar
[3] P. Brandner and A. Reusken, Finite element error analysis of surface Stokes equations in stream function formulation, ESAIM: M2AN, 54 (2020), No. 6, 2069–2097.10.1051/m2an/2020044Search in Google Scholar
[4] H. Brenner, Interfacial Transport Processes and Rheology, Elsevier, 2013.Search in Google Scholar
[5] E. Burman and A. Ern, An unfitted hybrid high-order method for elliptic interface problems, SIAM J. Numer. Anal. 56 (2018), 1525–1546.10.1137/17M1154266Search in Google Scholar
[6] E. Burman, P. Hansbo, M. G. Larson, and A. Massing, Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions, ESAIM: Math. Modelling Numer. Analysis 52 (2018), No. 6, 2247–2282.10.1051/m2an/2018038Search in Google Scholar
[7] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni, The Ricci Flow: Techniques and Applications. Part IV: Long-Time Solutions and Related Topics, American Mathematical Society, 2007.Search in Google Scholar
[8] A. Demlow and G. Dziuk, An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal. 45 (2007), 421–442.10.1137/050642873Search in Google Scholar
[9] DROPS package, http://www.igpm.rwth-aachen.de/DROPS/.Search in Google Scholar
[10] G. Dziuk, Finite elements for the Beltrami Operator on arbitrary surfaces, In: Partial Differential Equations and Calculus of Variations (Eds. S. Hildebrandt and R. Leis), Lecture Notes in Mathematics, Vol. 1357, Springer, 1988, pp. 142–155.Search in Google Scholar
[11] T.-P. Fries, Higher-order surface FEM for incompressible Navier–Stokes flows on manifolds, Int. J. Numer. Methods Fluids 88 (2018), No. 2, 55–78.10.1002/fld.4510Search in Google Scholar
[12] G. G. Fuller and J. Vermant, Complex fluid–fluid interfaces: rheology and structure, Annual Review of Chemical and Biomolecular Engrg. 3 (2012), 519–543.10.1146/annurev-chembioeng-061010-114202Search in Google Scholar PubMed
[13] J. Grande, C. Lehrenfeld, and A. Reusken, Analysis of a high-order trace finite element method for PDEs on level set surfaces, SIAM J. Numer. Analysis 56 (2018), No. 1, 228–255.10.1137/16M1102203Search in Google Scholar
[14] B. J. Gross, N. Trask, P. Kuberry, and P. J. Atzberger, Meshfree methods on manifolds for hydrodynamic flows on curved surfaces: A generalized moving least-squares (GMLS) approach, J. Comp. Phys., 409 (2020), 109340.10.1016/j.jcp.2020.109340Search in Google Scholar
[15] M. E. Gurtin and A. I. Murdoch, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis 57 (1975), No. 4, 291–323.10.1007/BF00261375Search in Google Scholar
[16] A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche's method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg. 191 (2002), 5537–5552.10.1016/S0045-7825(02)00524-8Search in Google Scholar
[17] P. Hansbo, M. G. Larson, and K. Larsson, Analysis of finite element methods for vector Laplacians on surfaces, IMA J. Numer. Anal. 40 (2020), No, 3, 1652–1701.10.1093/imanum/drz018Search in Google Scholar
[18] T. Heister and G. Rapin, Efficient augmented Lagrangian-type preconditioning for the Oseen problem using Grad-Div stabilization, Int. J. Numer. Methods Fluids 71 (2013), No. 1, 118–134.10.1002/fld.3654Search in Google Scholar
[19] T. Jankuhn, M. A. Olshanskii, and A. Reusken, Incompressible fluid problems on embedded surfaces: Modeling and variational formulations, Interfaces and Free Boundaries 20 (2018), 353–377.10.4171/IFB/405Search in Google Scholar
[20] T. Jankuhn and A. Reusken, Higher order trace finite element methods for the surface Stokes equation, Preprint arXiv:1909.08327, 2019.Search in Google Scholar
[21] T. Jankuhn and A. Reusken, Trace finite element methods for surface vector-Laplace equations, IMA J. Numer. Anal. 41 (2021), No. 1, 48–83.10.1093/imanum/drz062Search in Google Scholar
[22] P. L. Lederer, C. Lehrenfeld, and J. Schöberl, Divergence-free tangential finite element methods for incompressible flows on surfaces, Int. J. Numer. Meth. Engrg., 121 (2020), No. 11, 2503–2533.10.1002/nme.6317Search in Google Scholar PubMed PubMed Central
[23] C. Lehrenfeld, High order unfitted finite element methods on level set domains using isoparametric mappings, Comp. Methods Appl. Mechanics Engrg. 300 (2016), 716–733.10.1016/j.cma.2015.12.005Search in Google Scholar
[24] C. Lehrenfeld and A. Reusken, Analysis of a high-order unfitted finite element method for elliptic interface problems, IMA J. Numer. Anal. 38 (2017), No. 3, 1351–1387.10.1093/imanum/drx041Search in Google Scholar
[25] Netgen/NGSolve, https://ngsolve.org/.Search in Google Scholar
[26] I. Nitschke, A. Voigt, and J. Wensch, A finite element approach to incompressible two-phase flow on manifolds, J. Fluid Mech. 708 (2012), 418–438.10.1017/jfm.2012.317Search in Google Scholar
[27] I. Nitschke, S. Reuther, and A. Voigt, Hydrodynamic interactions in polar liquid crystals on evolving surfaces, Phys. Review Fluids 4 (2019), No. 4, 044002.10.1103/PhysRevFluids.4.044002Search in Google Scholar
[28] M. A. Olshanskii, A. Quaini, A. Reusken, and V. Yushutin, A finite element method for the surface Stokes problem, SIAM J. Sci. Comp. 40 (2018), No. 4, A2492–A2518.10.1137/18M1166183Search in Google Scholar
[29] M. A. Olshanskii, A. Reusken, and X. Xu, A stabilized finite element method for advection–diffusion equations on surfaces, IMA J. Numer. Anal. 34 (2014), 732–758.10.1093/imanum/drt016Search in Google Scholar
[30] M. A. Olshanskii and A. Reusken, Grad-div stabilization for Stokes equations, Math. Comp. 73 (2004), No. 248, 1699–1718.10.1090/S0025-5718-03-01629-6Search in Google Scholar
[31] M. A. Olshanskii and A. Reusken, Trace finite element methods for PDEs on surfaces, In: Geometrically Unfitted Finite Element Methods and Applications (Eds. S. P. A. Bordas, E. Burman, M. G. Larson, and M. A. Olshanskii), Springer, Cham, 2017, pp. 211–258.10.1007/978-3-319-71431-8_7Search in Google Scholar
[32] M. A. Olshanskii, A. Reusken, and J. Grande, A finite element method for elliptic equations on surfaces, SIAM J. Numer. Anal. 47 (2009), 3339–3358.10.1137/080717602Search in Google Scholar
[33] M. A. Olshanskii, A. Reusken, and A. Zhiliakov, Inf-sup stability of the trace P2-P1 Taylor–Hood elements for surface PDEs, Math. Comp., 90 (2021), 1527–1555.10.1090/mcom/3551Search in Google Scholar
[34] M. A. Olshanskii and V. Yushutin, A penalty finite element method for a fluid system posed on embedded surface, J. Math. Fluid Mech. 21 (2019), No. 1, 14.10.1007/s00021-019-0420-ySearch in Google Scholar
[35] M. Rahimi, A. DeSimone, and M. Arroyo, Curved fluid membranes behave laterally as effective viscoelastic media, Soft Matter 9 (2013), No. 46, 11033–11045.10.1039/c3sm51748aSearch in Google Scholar
[36] P. Rangamani, A. Agrawal, K. K. Mandadapu, G. Oster, and D. J. Steigmann, Interaction between surface shape and intra-surface viscous flow on lipid membranes, Biomechanics and Modeling in Mechanobiology 12 (2013), No. 4, 833–845.10.1007/s10237-012-0447-ySearch in Google Scholar PubMed PubMed Central
[37] A. Reusken, Analysis of trace finite element methods for surface partial differential equations, IMA J. Numer. Anal. 35 (2015), No. 4, 1568–1590.10.1093/imanum/dru047Search in Google Scholar
[38] A. Reusken, Stream function formulation of surface Stokes equations, IMA J. Numer. Anal. 40 (2020), No. 1, 109–139.10.1093/imanum/dry062Search in Google Scholar
[39] S. Reuther and A. Voigt, Solving the incompressible surface Navier–Stokes equation by surface finite elements, Physics of Fluids 30 (2018), No. 1, 012107.10.1063/1.5005142Search in Google Scholar
[40] A. Sahu, Y. Omar, R. Sauer, and K. Mandadapu, Arbitrary Lagrangian–Eulerian finite element method for curved and deforming surfaces, J. Comp. Phys. 407 (2020), 109253.10.1016/j.jcp.2020.109253Search in Google Scholar
[41] P. W. Schroeder, V. John, P. L. Lederer, C. Lehrenfeld, G. Lube, and J. Schöberl, On reference solutions and the sensitivity of the 2D Kelvin–Helmholtz instability problem, Computers & Mathematics Applications 77 (2019), No. 4, 1010–1028.10.1016/j.camwa.2018.10.030Search in Google Scholar
[42] SciPy, https://www.scipy.org/.Search in Google Scholar
[43] L. E. Scriven, Dynamics of a fluid interface equation of motion for Newtonian surface fluids, Chemical Engrg. Sci. 12 (1960), No. 2, 98–108.10.1016/0009-2509(60)87003-0Search in Google Scholar
[44] J. C. Slattery, L. Sagis, and E.-S. Oh, Interfacial Transport Phenomena, Springer Science & Business Media, 2007.Search in Google Scholar
[45] A. Torres-Sanchez, D. Santos-Olivan, and M. Arroyo, Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations, J. Comp. Phys., 405 (2020), No. 1, 109168.10.1016/j.jcp.2019.109168Search in Google Scholar
[46] A. Torres-Sánchez, D. Millán, and M. Arroyo, Modelling fluid deformable surfaces with an emphasis on biological interfaces, J. Fluid Mech. 872 (2019), 218–271.10.1017/jfm.2019.341Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston