Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 24, 2018

Biological and medical applications of plasma-activated media, water and solutions

  • Nagendra Kumar Kaushik EMAIL logo , Bhagirath Ghimire , Ying Li , Manish Adhikari , Mayura Veerana , Neha Kaushik , Nayansi Jha , Bhawana Adhikari , Su-Jae Lee , Kai Masur , Thomas von Woedtke , Klaus-Dieter Weltmann and Eun Ha Choi EMAIL logo
From the journal Biological Chemistry

Abstract

Non-thermal atmospheric pressure plasma has been proposed as a new tool for various biological and medical applications. Plasma in close proximity to cell culture media or water creates reactive oxygen and nitrogen species containing solutions known as plasma-activated media (PAM) or plasma-activated water (PAW) – the latter even displays acidification. These plasma-treated solutions remain stable for several days with respect to the storage temperature. Recently, PAM and PAW have been widely studied for many biomedical applications. Here, we reviewed promising reports demonstrating plasma-liquid interaction chemistry and the application of PAM or PAW as an anti-cancer, anti-metastatic, antimicrobial, regenerative medicine for blood coagulation and even as a dental treatment agent. We also discuss the role of PAM on cancer initiation cells (spheroids or cancer stem cells), on the epithelial mesenchymal transition (EMT), and when used for metastasis inhibition considering its anticancer effects. The roles of PAW in controlling plant disease, seed decontamination, seed germination and plant growth are also considered in this review. Finally, we emphasize the future prospects of PAM, PAW or plasma-activated solutions in biomedical applications with a discussion of the mechanisms and the stability and safety issues in relation to humans.

Acknowledgment

The presented work was supported by a grant from the National Research Foundation of Korea (NRF), which is funded by the Korean Government, Ministry of Science, ICT and Future Planning (MSIP), Funder Id: 10.13039/501100003725, NRF-2016K1A4A3914113 and NRF-2016R1C1B2010851 and as well as supported by TBI-V-1-234-VBW-081. This work was also supported by Kwangwoon University in 2018 and Ministry of Trade; Industry and Energy grant No. 20131610101840.

References

Acquaah, G. (2007). Principles of Plant Genetics and Breeding (Chichester, UK: John Wiley & Sons, Ltd.).Search in Google Scholar

Adachi, T., Tanaka, H., Nonomura, S., Hara, H., Kondo, S., and Hori, M. (2015). Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radic. Biol. Med. 79, 28–44.10.1016/j.freeradbiomed.2014.11.014Search in Google Scholar PubMed

Akimoto, Y., Ikehara, S., Yamaguchi, T., Kim, J., Kawakami, H., Shimizu, N., Hori, M., Sakakita, H., and Ikehara, Y. (2016). Galectin expression in healing wounded skin treated with low-temperature plasma: comparison with treatment by electronical coagulation. Arch. Biochem. Biophys. 605, 86–94.10.1109/PLASMA.2016.7534126Search in Google Scholar

Andrian, E., Grenier, D., and Rouabhia, M. (2006). Porphyromonas gingivalis-epithelial cell interactions in periodontitis. J. Dent. Res. 85, 392–403.10.1177/154405910608500502Search in Google Scholar PubMed

Aruoma, O.I. (1998). Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75, 199–212.10.1007/s11746-998-0032-9Search in Google Scholar PubMed PubMed Central

Attri, P., Kim, Y., Park, D., Park, J., Hong, Y., Uhm, H., Kim, K., Fridman, A., and Choi, E. (2015). Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci. Rep. 5, 9332.10.1038/srep09332Search in Google Scholar PubMed PubMed Central

Baek, E., Joh, H., Kim, S., and Chung, T. (2016). Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets. Phys. Plasmas 23, 073515.10.1063/1.4959174Search in Google Scholar

Baier, M., Foerster, J., Schnabel, U., Knorr, D., Ehlbeck, J., Herppich, W.B., and Schloter, O. (2013). Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biol. Technol. 84, 81–87.10.1016/j.postharvbio.2013.03.022Search in Google Scholar

Barba-Espín, G., Hernández, J.A., and Diaz-Vivancos, P. (2012). Role of H2O2 in pea seed germination. Plant Signal. Behav. 7, 193–195.10.4161/psb.18881Search in Google Scholar PubMed PubMed Central

Barkai-Golan, R. (2001). Postharvest Diseases of Fruits and Vegetables: Development and Control (Amsterdam, The Netherlands: Elsevier Science), pp. 25–32.10.1016/B978-044450584-2/50003-4Search in Google Scholar

Bekeschus, S., Schmidt, A., Weltmann, K.-D., and von Woedtke, T. (2016). The plasma jet kINPen – a powerful tool for wound healing. Clin. Plasma Med. 4, 19–28.10.1016/j.cpme.2016.01.001Search in Google Scholar

Beuchat, L.R., Clavero, M.R., and Jaquette, C.B. (1997). Effect of nisin and temperature on survival, growth and enterotoxin production characteristics of psychotropic B. cereus in beef gravy. Appl. Environ. Microbiol. 63, 1953–1958.10.1128/aem.63.5.1953-1958.1997Search in Google Scholar PubMed PubMed Central

Boehm, D., Curtin, J., Cullen, P.J., and Bourke, P. (2017). Hydrogen peroxide and beyond-the potential of high-voltage plasma-activated liquids against cancerous cells. Anti-Cancer Agents Med. Chem. 17, DOI: 10.2174/1871520617666170801110517. (Epub ahead of print).10.2174/1871520617666170801110517Search in Google Scholar PubMed

Bowen, C.G., Greenwood, W., Guevara, P., and Washington, M.A. (2015). Effectiveness of a dental unit waterline treatment protocol with A-Dec ICX and Citrisil Disinfectants. Mil Med. 180, 1098–1104.10.7205/MILMED-D-14-00643Search in Google Scholar PubMed

Braginsky, O., Vasilieva, A., Klopovskiy, K., Kovalev, A., Lopaev, D., Proshina, O., Rakhimova, T., and Rakhimov, A. (2005). Singlet oxygen generation in O2 flow excited by RF discharge: I. Homogeneous discharge mode: α-mode. J. Phys. D Appl. Phys. 38, 3609.10.1088/0022-3727/38/19/010Search in Google Scholar

Brandenburg, R. (2017). Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 26, 053001.10.1088/1361-6595/aa6426Search in Google Scholar

Brisset, J. and Pawlat, J. (2016). Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water. Plasma Chem. Plasma Process. 36, 355–381.10.1007/s11090-015-9653-6Search in Google Scholar

Bruggeman, P. and Leys, C. (2009). Non-thermal plasmas in and in contact with liquids. J. Phys. D Appl. Phys. 42, 053001–053029.10.1088/0022-3727/42/5/053001Search in Google Scholar

Brune, B. (2003). Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 10, 864–869.10.1038/sj.cdd.4401261Search in Google Scholar PubMed

Burlica, R., Kirkpatrick, M.J., and Locke, B.R. (2006). Formation of reactive species in gliding arc discharges with liquid water. J. Electrostat. 64, 35–43.10.1016/j.elstat.2004.12.007Search in Google Scholar

Chauvin, J., Judée, F., Yousfi, M., Vicendo, P., and Merbahi, N. (2017). Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Sci. Rep. 7, 4562.10.1038/s41598-017-04650-4Search in Google Scholar PubMed PubMed Central

Chen, Z., Lin, L., Chenx X., Gjika E., and Keidar, M. (2016). Effects of cold atmospheric plasma generated in deionized water in cell cancer therapy. Plasma Process. Polym. 13, 1–6.10.1002/ppap.201600086Search in Google Scholar

Chen, Z., Krasik, Y., Cousens, S., Ambujakshan, A., Corr, C., and Dai, X. (2017). Generation of underwater discharges inside gas bubbles using a 30-needles-to-plate electrode. J. Appl. Phys. 122, 153303.10.1063/1.4993497Search in Google Scholar

Cheng, Y.U., Wu, C.H., Liu, C.T., Lin, C.Y., Chiang, H.P., Chen, T.W., Chen, C.Y., and Wu, J.S. (2017). Tooth bleaching by using a helium-based low-temperature atmospheric pressure plasma jet with saline solution. Plasma Process. Polym. 14, 1600235.10.1002/ppap.201600235Search in Google Scholar

Dai, X., Corr, C., Ponraj, S., Maniruzzaman, M., Ambujakshan, A., Chen, Z., Kviz, L., Lovett, R., Rajmohan, G., Celis, D., et al. (2015). Efficient and selectable production of reactive species using a nanosecond pulsed discharge in gas bubbles in liquid. Plasma Process. Polym. 13, 306–310.10.1002/ppap.201500156Search in Google Scholar

Dobrynin, D., Fridman, G., Friedman, G., and Fridman, A. (2009). Physical and biological mechanisms of plasma interaction with living tissue. New J. Phys. 11, 1–26.10.1088/1367-2630/11/11/115020Search in Google Scholar

Duan, J., Lu, X., and He, J. (2017). The selective effect of plasma activated medium in an in vitro co-culture of liver cancer and normal cells. J. Appl. Phys. 121, 013302.10.1063/1.4973484Search in Google Scholar

Dvorak, P., Mrkvickova, M., Obrusnik, A., Kratzer, J., Dedina, J., and Prochazka, V. (2017). Fluorescence measurement of atomic oxygen concentration in a dielectric barrier discharge. Plasma Sources Sci. Technol. 26, 065020.10.1088/1361-6595/aa70daSearch in Google Scholar

Ercan, U.K., Wang, H., Ji, H., Fridman, G., Brooks, A.D., and Joshi, S.G. (2013). Nonequilibrium plasma-activated antimicrobial solutions are broad-spectrum and retain their efficacies for extended period of time. Plasma Process. Polym. 10, 544–555.10.1002/ppap.201200104Search in Google Scholar

Fridman, A., Chirokov, A., and Gutsol, A. (2005). Non-thermal atmospheric pressure discharges. J. Phys D Appl. Phys. 38, 1–24.10.1088/0022-3727/38/2/R01Search in Google Scholar

Fridman, G., Friedman, G., Gutsol, A., Shekhter, A.B., Vasilets, V.N., and Fridman, A. (2008). Applied plasma medicine. Plasma Process. Polym. 5, 503–533.10.1002/ppap.200700154Search in Google Scholar

Friedline, A., Zachariah, M., Middauch, A., Heiser, M., Khanna, N., Vaishampayan, P., and Rice, C. (2015). Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide. AMB Express. 5, 24.10.1186/s13568-015-0109-4Search in Google Scholar PubMed PubMed Central

Fthollah, S., Mirpour, S., Mansouri, P., Dehpour, A., Ghoranneviss, M., Rahimi, N., Naraghi, Z., Chalangari, R., and Chalangari, K. (2016). Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Sci. Rep. 6, 19144.10.1038/srep19144Search in Google Scholar PubMed PubMed Central

Ghimire, B., Sornsakdanuphap, J., Hong, Y., Uhm, H., Weltmann, K., and Choi, E. (2017). The effect of the gap distance between an atmospheric-pressure plasma jet nozzle and liquid surface on OH and N2 species concentrations. Phys. Plasmas 24, 073502.10.1063/1.4989735Search in Google Scholar

Girard, P., Arbabian, A., Fluery, M., Bauville, G., Puech, V., Dutreix, M., and Sousa, J. (2016). Synergistic effect of H2O2 and NO2 in cell death induced by cold atmospheric He plasma. Sci. Rep. 1, 29098.10.1038/srep29098Search in Google Scholar PubMed PubMed Central

Gorbanev, Y., O’Connell, D., and Chechik, V. (2016). Non-thermal plasma in contact with water: the origin of species. Chemistry 22, 10.10.1002/chem.201503771Search in Google Scholar PubMed PubMed Central

Graves, D.B. (2012). The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 45, 263001.10.1088/0022-3727/45/26/263001Search in Google Scholar

Guyader, P., Amgar, A., and Coignard, M. (1996) La désinfection. In: Microbiologie Alimentaire Tome 1 ed. C.M. Bourgeois, J.F. Mescle and J. Zucca, eds. (Paris: Tec et Doc Lavoisier), pp. 441–460.Search in Google Scholar

Haertel, B., Woedtke, T., Weltmann, K., and Lindequist, U. (2014). Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol. Ther. 22, 477–490.10.4062/biomolther.2014.105Search in Google Scholar PubMed PubMed Central

Harrison, F.E. (2012). A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J. Alzheimers Dis. 29, 711–726.10.3233/JAD-2012-111853Search in Google Scholar PubMed PubMed Central

Heinlin, J., Isbary, G., Stolz, W., Morfill, G., Landthaler, M., Shimizu, T., Steffes, B., Nosenko, T., Zimmermann, J., and Karrer, S. (2011). Plasma applications in medicine with a special focus on dermatology. J. Eur. Acad. Dermatol. Venereol. 25, 1–11.10.1111/j.1468-3083.2010.03702.xSearch in Google Scholar PubMed

Helmke, A., Hoffmeister, D., Berge, F., Emmert, S., Laspe, P., Mertens, N., Vioel, W., and Weltmann, K.D. (2011). Physical and microbiological characterisation of Staphylococcus epidermidis inactivation by dielectric barrier discharge plasma. Plasma Process. Polym. 8, 278–286.10.1002/ppap.201000168Search in Google Scholar

Hong, S.J., Dawson, T.M., and Dawson, V.L. (2004). Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol. Sci. 25, 259–264.10.1016/j.tips.2004.03.005Search in Google Scholar PubMed

Horiba, M., Kamiya, T., Hara, H., and Adachi, T. (2017). Cytoprotective effects of mild plasma-activated medium against oxidative stress in human skin fibroblasts. Sci. Rep. 7, e42208.10.1038/srep42208Search in Google Scholar PubMed PubMed Central

Horikoshi, S. and Serpone, N. (2017). In-liquid plasma: a novel tool in the fabrication of nanomaterials and in the treatment of wastewaters. RSC Adv. 7, 47196–47218.10.1039/C7RA09600CSearch in Google Scholar

Ikeda, J.I., Tanaka, H., Ishikawa, K., Sakakita, H., Ikehara, Y., and Hori, M. (2018). Plasma-activated medium (PAM) kills human cancer-initiating cells. Pathol. Int. 68, 23–30.10.1111/pin.12617Search in Google Scholar PubMed

Ikehara, Y., Sakakita, H., Shimizu, N., Ikehara, S., and Nakanish, H. (2013). Formation of membrane-like structures in clotted blood by mild plasma treatment during hemostasis. J. Photopolym. Sci. Technol. 26, 555–557.10.2494/photopolymer.26.555Search in Google Scholar

Io, T., Uchida, G., Nakajima, A., Takenaka, K., and Setsuhara, Y. (2016). Control of reactive oxygen and nitrogen species production in liquid by nonthermal plasma jet with controlled surrounding gas. Jpn. J. Appl. Phys. 56, 01AC06.10.7567/JJAP.56.01AC06Search in Google Scholar

Iseki, S., Nakamura, K., Hayashi, M., Tanaka, H., Kondo, H., Kajiyama, H., Kano, H., Kikkawa, F., and Hori, M. (2012). Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 100, 113702.10.1063/1.3694928Search in Google Scholar

Ishida, C., Mori, M., Nakamura, K., Tanaka, H., Mizuno, M., Hori, M., Iwase, A., Kikkawa, F., and Toyokuni, S. (2016). Non-thermal plasma prevents progression of endometriosis in mice. Free Rad. Res. 50, 1131–1139.10.1080/10715762.2016.1211273Search in Google Scholar PubMed

Ismael, S.Z., Khandaker, M.M., Mat, N., and Boyce, A.N. (2015). Effects of hydrogen peroxide on growth, development and quality of fruits: a review. J. Agron. 14, 331–336.10.3923/ja.2015.331.336Search in Google Scholar

Jablonowski, H. and Woedtke, T.V. (2015). Research on plasma medicine-relevant plasma liquid interaction: what happened in the past five years? Clin. Plasma Med. 3, 42–52.10.1016/j.cpme.2015.11.003Search in Google Scholar

Janda, M., Sovits, V.M., Hensel, K., and Machala, Z. (2016). Generation of antimicrobial NOx by atmospheric air transient spark discharge. Plasma Chem. Plasma Process. 36, 767–781.10.1007/s11090-016-9694-5Search in Google Scholar

Jha, N., Ryu, J.J., Choi, E.H., and Kaushik, N.K. (2017). Generation and role of reactive oxygen and nitrogen species induced by plasma, lasers, chemical agents, and other systems in dentistry. Oxid. Med. Cell Longev. 2017, 7542540.10.1155/2017/7542540Search in Google Scholar PubMed PubMed Central

Joshi, S.G., Cooper, M., Yost, A., Paff, M., Ercan, U.K., Fridman, G., Friedman, G., Fridman, A., and Brooks, A.D. (2011). Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 55, 1053–1062.10.1128/AAC.01002-10Search in Google Scholar PubMed PubMed Central

Joslin, J., McCall, J.R., Bzdek, J., Johnson, D., and Hybertson, B. (2016). Aqueous plasma pharmacy: preparation methods, chemistry, and therapeutic applications. Plasma Med. 6, 135–177.10.1615/PlasmaMed.2016018618Search in Google Scholar PubMed PubMed Central

Judée, F., Fongia, C., Ducommun, F., Yousfi, M., Lobjois, V., and Merbahi, N. (2016). Short and long time effects of low temperature plasma activated media on 3D multicellular tumor spheroids. Sci. Rep. 6, 21421.10.1038/srep21421Search in Google Scholar PubMed PubMed Central

Judée, F., Simon, S., and Dufour, T. (2018). Plasma-activation of tap water using DBD for agronomy applications: identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Res. 133, 47–59.10.1016/j.watres.2017.12.035Search in Google Scholar PubMed

Kalghatgi, S., Friedman, G., Fridman, A., and Clyne, A.M. (2010). Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann. Biomed. Eng. 38, 748–757.10.1007/s10439-009-9868-xSearch in Google Scholar PubMed

Kamgang-Youbi, G., Herry, J.M., Bellon-Fontaine, M.N., Brisset, J.L., Doubla, A., and Naïtali, M. (2007). Evidence of temporal postdischarge decontamination of bacteria by gliding electric discharges: application to Hafnia alvei. Appl. Environ. Microbiol. 73, 4791–4796.10.1128/AEM.00120-07Search in Google Scholar PubMed PubMed Central

Kamgang-Youbi, G., Herry, J.M., Brisset, J.L., Bellon-Fontaine, M.N., Doubla, A., and Naïtali, M. (2008). Impact on disinfection efficiency of cell load and of planktonic/adherent/detached state: case of Hafnia alvei inactivation by plasma activated water. Appl. Microbiol. Biotechnol. 81, 449–457.10.1007/s00253-008-1641-9Search in Google Scholar PubMed

Kamgang-Youbi, G., Herry, J.M., Brisset, J.L., Bellon-Fontaine, M.N., Doubla, A., and Naıtali, M. (2009). Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett. Appl. Microbiol. 48, 13–18.10.1111/j.1472-765X.2008.02476.xSearch in Google Scholar PubMed

Kang, Z.Q. (2016). The bleaching efficiency and bio-safety assessment of plasma activated water by low conc. H2O2. Global Thesis. 2016.Search in Google Scholar

Kaushik, N.K., Kaushik, N., Yoo, K.C., Uddin, N., Kim, J.S., Lee, S.-J., and Choi, E.H. (2016). Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT. Biomaterials 87, 118–130.10.1016/j.biomaterials.2016.02.014Search in Google Scholar PubMed

Kawasaki, T., Kusumegi, S., Kudo, A., Sakanoshita, T., Tsurumaru, T., and Sato, A. (2016). Effects of gas flow rate on supply of reactive oxygen species into a target through liquid layer in cold plasma jet. IEEE Trans. Plasma Sci. 44, 3223.10.1109/TPS.2016.2628872Search in Google Scholar

Kayes, M.M., Critzer, F.J., Kelly-Wintenberg, K., Roth, J.R., Montie, T.C., and Golden, D.A. (2007). Inactivation of foodborne pathogens using a one atmosphere uniform glow discharge plasma. Foodborne Pathog. Dis. 4, 50–59.10.1089/fpd.2006.62Search in Google Scholar

Keidar, M., Shashurin, A., Volotskova, O., Stepp, M., Srinivasan, P., Sandler, A., and Trink, B. (2013). Cold atmospheric plasma in cancer therapy. Phys. Plasmas 20, 057101.10.1063/1.4801516Search in Google Scholar

Kim, P.K., Zamora, R., Petrosko, P., and Billiar, T.R. (2001). The regulatory role of nitric oxide in apoptosis. Int. J. Immunopharmacol. 1, 1421–1441.10.1016/S1567-5769(01)00088-1Search in Google Scholar

Kim, S.J., Chung, T.H., Bae, S.H., and Leem, S.H. (2009). Bacteria inactivation using atmospheric pressure single pin electrode microplasma jet with a group ring. Appl. Phys. Lett. 94, 141502.10.1063/1.3114407Search in Google Scholar

Kim, Y., Hong, Y., Baik, K., Kwon, G., Choi, J. Cho, G, Uhm, H., Kim, D., and Choi, E. (2014). Measurement of reactive hydroxyl radical species inside the biosolutions during non-thermal atmospheric pressure plasma jet bombardment onto the solution. Plasma Chem. Plasma Process. 34, 457.10.1007/s11090-014-9538-0Search in Google Scholar

Kim, Y., Jin, S., Han, G., Kwon, G., Choi, J., Choi, E., Uhm, S., and Cho, G. (2015). Plasma apparatuses for biomedical applications. IEEE Trans. Plasma Sci. 43, 944.10.1109/TPS.2015.2388775Search in Google Scholar

King, D.A., Sheafor, M.W., and Hurst, J.K. (2006). Comparative toxicities of putative phagocyte-generated oxidizing radicals toward a bacterium (Escherichia coli) and a yeast (Saccharomyces cerevisiae). Free Radic. Biol. Med. 41, 765–774.10.1016/j.freeradbiomed.2006.05.022Search in Google Scholar PubMed

Knake, N., Reuter, S., Niemi, K., Schulz, V., and Winter, J. (2008). Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 41, 194006.10.1088/0022-3727/41/19/194006Search in Google Scholar

Koban, I., Holtfreter, B., Hübner, N.O., Matthes, R., Sietmann, R., Kindel, E., Weltmann, K.D., Welk, A., Kramer, A., and Kocher, T. (2011). Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro – proof of principle experiment. J. Clin. Periodontol. 38, 956–965.10.1111/j.1600-051X.2011.01740.xSearch in Google Scholar PubMed

Kolb, J.F., Mohamed, A.A.H., Price, R.O., Swanson, R.J., Bowman, A., Chiavarini, R.L., and Schoenbach, K.H. (2008). Cold atmospheric pressure air plasma jet for medical applications. Appl. Phys. Lett. 92, 241501.10.1063/1.2940325Search in Google Scholar

Kostov, K., Machida, M., Prysiazhnyi, V., and Honda, R. (2015). Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube. Plasma Sources Sci. Technol. 24, 025038.10.1088/0963-0252/24/2/025038Search in Google Scholar

Kumar, N., Park, J.H., Jeon, S.N., Park, B.S., Choi, E.H., and Attri, P. (2016). The action of microsecond-pulsed plasma-activated media on the inactivation of human lung cancer cells. J. Phys. D 49, 115401.10.1088/0022-3727/49/11/115401Search in Google Scholar

Kuninova, S., Zaviskova, K., Uherkova, L., Zablotskii, V., Churpita, O., Lunov, O., and Dejneka, A. (2017). Non-thermal air plasma promotes the healing of acute skin wounds in rats. Sci. Rep. 7, 45183.10.1038/srep45183Search in Google Scholar PubMed PubMed Central

Kuok, S.N. (2017). Theory of low-temperature physics. In: Springer Series on Atomic, Optical and Plasma Physics, Vol. 95. ISBN: 978-3-319-43719-4. DOI: 10.1007/978-3-319-43721-7.10.1007/978-3-319-43721-7Search in Google Scholar

Kurake, N., Tanaka, H., Ishikawa, K., Kondo, T., Sekine, M., Nakamura, K., Kajiyama, H., Kikkawa, F., Mizuno, M., and Hori, M. (2016). Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch. Biochem. Biophys. 605, 102–108.10.1016/j.abb.2016.01.011Search in Google Scholar PubMed

Kurake, N., Tanaka, H., Ishikawa, K., Takeda, K., Hashizume, H., Nakamura, K., Kajiyama, H, Kondo, T., Kikkawa, F., Mizuno, M., et al. (2017). Effects of ˙OH and ˙NO radicals in the aqueous phase on H2O2 and NO2 generated in plasma-activated medium. J. Phys. D Appl. Phys. 50, 155202.10.1088/1361-6463/aa5f1dSearch in Google Scholar

Kurita, M., Shimizu, M., Sano, K., Nakajima, T., Yasuda, H., Takashima, K., and Mizuno, A. (2014). Radical reaction in aqueous media injected by atmospheric pressure plasma jet and protective effect of antioxidant reagents evaluated by single-molecule DNA measurement. Jap. J. Appl. Phys. 53, 05FR01.10.7567/JJAP.53.05FR01Search in Google Scholar

Laroussi, M. (2002). Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans. Plasma Sci. 30, 1409–1455.10.1109/TPS.2002.804220Search in Google Scholar

Laroussi, M. (2005). Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process. Polym. 2, 391400.10.1002/ppap.200400078Search in Google Scholar

Laroussi, M. and Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 233, 81–86.10.1016/j.ijms.2003.11.016Search in Google Scholar

Laroussi, M., Mendis, D.A., and Rosenberg, M. (2003). Plasma interaction with microbes. New J. Phys. 5, 41.1–41.10.10.1088/1367-2630/5/1/341Search in Google Scholar

Laroussi, M., Lu, X., and Keidar, M. (2017). Perspective: the physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J. Appl. Phys. 122, 020901. DOI: 10.1063/1.4993710.10.1063/1.4993710Search in Google Scholar

Laurita, R., Barbieri, D., Gherardi, M., Colombo, V., and Lukes, P. (2015). Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin. Plasma Med. 3, 53–61.10.1016/j.cpme.2015.10.001Search in Google Scholar

Levko, D., Sharma, A., and Raja, L. (2016). Plasmas generated in bubbles immersed in liquids: direct current streamers versus microwave plasma. J. Phys. D Appl. Phys. 49, 285205.10.1088/0022-3727/49/28/285205Search in Google Scholar

Li, Y., Kang, M.H., Uhm, H.S., Lee, G.J., Choi, E.H., and Han, I. (2017a). Effects of atmospheric-pressure non-thermal bio-compatible plasma and plasma activated nitric oxide water on cervical cancer cells. Sci. Rep. 7, 45781.10.1038/srep45781Search in Google Scholar PubMed PubMed Central

Li, Y., Pan, J., Ye, G., Zhang, Q., Wang, J., Zhang, J., and Fang, J. (2017b). In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash. Eur. J. Oral Sci. 125, 463–470.10.1111/eos.12374Search in Google Scholar PubMed

Liebermann, D.A., Hoffman, B., and Steinman, R.A. (1995). Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11, 199–210.Search in Google Scholar

Lin, A., Truong, B., Patel, S., Kaushik, N., Choi, E.H., Fridman, G., Fridman, A., and Miller, V. (2017). Nanosecond-pulsed DBD plasma-generated reactive oxygen species trigger immunogenic cell death in A549 lung carcinoma cells through intracellular oxidative stress. Int. J. Mol. Sci. 18, 966.10.3390/ijms18050966Search in Google Scholar PubMed PubMed Central

Linley, E., Denyer, S., McDonnell, G., Simons, C., and Maillard, J. (2012). Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J. Antimicrob. Chemother. 67, 1589–1596.10.1093/jac/dks129Search in Google Scholar PubMed

Liu, D.X., Liu, Z.C., Chen, C. Yang, A.J., Li,D., Rong, M.Z., Chen, H.L., and Kong, M.G. (2016). Aqueous reactive species induced by a surface air discharge: heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 6, 23737.10.1038/srep23737Search in Google Scholar PubMed PubMed Central

Lotfy, K. (2016). Cold atmospheric plasma and oxidative stress: reactive oxygen species vs. antioxidant. Austin Biochem. 1, 1001.Search in Google Scholar

Lu, X., Jiang, Z., Xiong, Q., Tang, Z., and Pan, Y. (2008). A single electrode room-temperature plasma jet device for biomedical applications. Appl. Phys. Lett. 92, 151504.10.1063/1.2912524Search in Google Scholar

Lu, T., Qiao, Y., and Liu, X. (2012a). Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus 2, 325–336.10.1098/rsfs.2012.0003Search in Google Scholar PubMed PubMed Central

Lu, X., Laroussi, M., and Puech, V. (2012b). On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol. 21, 034005.10.1088/0963-0252/21/3/034005Search in Google Scholar

Lu, X., Naidis, G.V., Laroussi, M., Reuter, S., Graves, D.B., and Ostrikov, K. (2016). Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys. Rep. 630, 1–84.10.1016/j.physrep.2016.03.003Search in Google Scholar

Lukes, P., Brisset, J.L., and Locke, B.R. (2012). Biological effects of electrical discharge plasma in water and in gas-liquid environments. In: Plasma Chemistry and Catalysis in Gases and Liquids, pp. 309–352. ISBN: 9783527330065. DOI: 10.1002/9783527649525.ch8.10.1002/9783527649525.ch8Search in Google Scholar

Lukes, P., Dolezalova, E., Sisrova, I., and Clupek, M. (2014). Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci. Technol. 23, 015019.10.1088/0963-0252/23/1/015019Search in Google Scholar

Ma, R., Feng, H., Li, F., Liang, Y., Zhang, Q., Zhu, W., Zhang, J., Becker, K.H., and Fang, J. (2012). An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment. Appl. Phys. Lett. 100, 12370.10.1063/1.3693165Search in Google Scholar

Ma, R., Wang, G., Tian, Y., Wang, K., Zhang, J., and Fang, J. (2015). Non thermal plasma activated water inactivation of food borne pathogen on fresh produce. J. Hazard. Mat. 300, 643–651.10.1016/j.jhazmat.2015.07.061Search in Google Scholar PubMed

Ma, R., Yu, S., Tian, Y., Wang, K., Sun, C., Li, X., Zhang, J., Chen, K., and Fang, J. (2016). Effect of non-thermal plasma-activated water on fruit decay and quality in postharvest Chinese bayberries. Food Bioprod. Technol. 9, 1825–1834.10.1007/s11947-016-1761-7Search in Google Scholar

Maheux, S., Duday, D., Belmonte, T., Penny, C., Cauchie, H.M., Clément, F., and Choquet, P. (2015). Formation of ammonium in saline solution treated by nanosecond pulsed cold atmospheric microplasma: a route to fast inactivation of E. coli bacteria. RSC Adv. 5, 42135–42140.10.1039/C5RA01109DSearch in Google Scholar

Mancinelli, R. and Mckay, C. (1983). Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl. Environ. Microbiol. 46, 198–202.10.1128/aem.46.1.198-202.1983Search in Google Scholar PubMed PubMed Central

Mann, M.S., Tiede, R., Gavenis, K., Daeschlein, G., Bussiahn, R., Weltmann, K.-D., Emmert, S., Woedtke, T.V., and Ahmed, R. (2016). Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED. Clin. Plasma Med. 4, 35–45.10.1016/j.cpme.2016.06.001Search in Google Scholar

Marder, E.P., Griffin, P.M., Cieslak, P.R., Dunn, J., Hurd, S., Jervis, R., Lathrop, S., Muse, A., Ryan P., Smith, K., et al. (2018). Preliminary incidence and trends of infections with pathogens transmitted commonly through food – foodborne diseases active surveillance network, 10 U.S. Sites, 2006–2017. Weekly 67, 324–328.10.15585/mmwr.mm6711a3Search in Google Scholar PubMed PubMed Central

Matsumoto, R., Shimizu, K., Nagashima, T., Tanaka, H., Mizuno, M., Kikkawa, F., Hori, M., and Honda, H. (2016). Plasma-activated medium selectively eliminates undifferentiated. Regen. Ther. 5, 55–63.10.1016/j.reth.2016.07.001Search in Google Scholar PubMed PubMed Central

Miyamoto, K., Ikehara, S., Takei, H., Akimoto, Y., Sakakita, H., Ishikawa, K., Ueda, M., Ikeda, J., Yamagishi, M., and Kim, J. (2016). Red blood cell coagulation induced by low-temperature plasma treatment. Arch. Biochem. Biophys. 605, 95–101.10.1016/j.abb.2016.03.023Search in Google Scholar PubMed

Mohades, S., Laroussi, M., Sears, J., Barekzi, N., and Razavi, H. (2015). Evaluation of the effects of a plasma activated medium on cancer cells. Phys. Plasmas 22, 122001.10.1063/1.4933367Search in Google Scholar

Mohades, S., Barekzi, N., Razavi, H., Maruthamuthu, V., and Laroussi, M. (2016a). Intraperitoneal administration of plasma-activated medium: proposal of a novel treatment option for peritoneal metastasis from gastric cancer. Plasma Process. Polym. 13, 12.10.1002/ppap.201600118Search in Google Scholar

Mohades, S., Barekzi, N., Razavi, H., Maruthamuthu, V., and Laroussi, M. (2016b). Temporal evaluation of the anti-tumor efficiency of plasma-activated media. Plasma Process. Polym. 13, 1206.10.1002/ppap.201600118Search in Google Scholar

Mohades, S., Laroussi, M., and Maruthamuthu, V. (2017). Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells. J. Phys. D Appl. Phys. 50, 185205.10.1088/1361-6463/aa678aSearch in Google Scholar

Moreau, M., Orange, N., and Feuilloley, M.G. (2008). Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol. Adv. 26, 610–617.10.1016/j.biotechadv.2008.08.001Search in Google Scholar PubMed

Morris, A.D., McCombs, G.B., Akan, T., Hynes, W., Laroussi, M., and Tolle, S.L. (2009). Cold plasma technology: bactericidal effects on Geobacillus stearothermophilus and Bacillus cereus microorganisms. J. Dent. Hyg. 83, 55–61.Search in Google Scholar

Nagatsu, M., Terashita, F., Nonaka, H., Xu, L., Nagata, T., and Koide, Y. (2005). Effects of oxygen radicals in low-pressure surface wave plasma on sterilization. Appl. Phys. Lett. 86, 211502.10.1063/1.1931050Search in Google Scholar

Naim, A.H. (2015). Influence of pre-sowing treatment with hydrogen peroxide on alleviation salinity stress impacts on cow pea germination and early seedling development. Asian J. Plant Sci. 5, 62–67.Search in Google Scholar

Naïtali, M., Kamgang-Youbi, G., Herry, J.M., Bellon-Fontaine, M.-N., and Brisset, J.L. (2010). Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl. Environ. Microbiol. 76, 7662–7664.10.1128/AEM.01615-10Search in Google Scholar PubMed PubMed Central

Nakamura, K., Peng, Y., Utsumi, F., Tanaka, H., Mizuno, M., Toyokuni, M., Hori, M., Kikkawa, F., and Kajiyama, H. (2017). Novel intraperitoneal treatment with non-thermal plasma-activated medium inhibits metastatic potential of ovarian cancer cells. Sci. Rep. 7, 6085.10.1038/s41598-017-05620-6Search in Google Scholar PubMed PubMed Central

Narayanasamy, P. (2005). Postharvest Pathogens and Disease Management (Hoboken, USA: John Wiley & Sons Inc.).10.1002/0471751987Search in Google Scholar

Nikirov, A., Xiong, Q., Britun, N., Snyders, R., Lu, X., and Leys, C. (2011). Absolute concentration of OH radicals in atmospheric pressure glow discharges with a liquid electrode measured by laser-induced fluorescence spectroscopy. Appl. Phys. Express 4, 026102.10.1143/APEX.4.026102Search in Google Scholar

Ninomiya, K., Ishijima, T., Imamura, M., Yamahara, T., Enomoto, H., Takahashi, K., Tanaka Y., Uesugi, Y., and Shimizu, N. (2013). Evaluation of extra- and intracellular OH radical generation, cancer cell injury, and apoptosis induced by a non-thermal atmospheric-pressure plasma jet. J. Phys. D 46, 425401.10.1088/0022-3727/46/42/425401Search in Google Scholar

Nofel, M., Chauvin, J., Vicendo, P., and Judée, F. (2017). Effects of plasma activated medium on head and neck FaDu cancerous cells: comparison of 3D and 2D response. Anti-Cancer Agents Med. Chem. 17, DOI: 10.2174/1871520617666170801111055.10.2174/1871520617666170801111055Search in Google Scholar PubMed

Norberg, S., Tian, W., Johnsen, E., and Kushner, M. (2014). Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid. J. Phy. D: Appl. Phys. 47, 475203.10.1088/0022-3727/47/47/475203Search in Google Scholar

Oehmigen, K., Hahnel, M., Brandenburg, R., Wilke, C., Weltmann, K.D., and Von-Woedtke, T. (2010). The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 7, 250–257.10.1002/ppap.200900077Search in Google Scholar

Oehmigen, K., Winter, J., Hahnel, M., Wilke, C., Brandenburg, R., Weltmann, K.D., and Von-Woedtke, T. (2011). Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Process. Polym. 8, 904–913.10.1002/ppap.201000099Search in Google Scholar

Oh, J., Szili, E., Ogawa, K., Short, R., Ito, M., Furuta, M., and Hatta, A. (2018). UV–vis spectroscopy study of plasma-activated water: dependence of the chemical composition on plasma exposure time and treatment distance. Jpn. J. Appl. Phys. 57, 0102B9.10.7567/JJAP.57.0102B9Search in Google Scholar

Ouf, S.A., Mohamed, A.A.H., and El-Sayed, W.S. (2016). Fungal decontamination of fleshy fruit water washes by double atmospheric pressure cold plasma. Clean 44, 134–142.10.1002/clen.201400575Search in Google Scholar

Pan, J., Sun, K., Liang, Y.D., Sun, P., Yang, X.H., Wang, J., and Becker, K.H. (2013). Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. J. Endod. 39, 105–110.10.1016/j.joen.2012.08.017Search in Google Scholar PubMed

Pan, J., Li, Y.L., Liu, C.M., Tian, Y., Yu, S., Wang, K.L., Zhang, J., and Fang, J. (2017). Investigation of cold atmospheric plasma-activated water for the dental unit waterline system contamination and safety evaluation in vitro. Plasma Chem. Plasma P. 37, 1091–1103.10.1007/s11090-017-9811-0Search in Google Scholar

Pankaj, S.K., Bueno-Ferrer, C., Misra, N.N., Milosavljevic, V., O’Donnell, C.P., Bourke, P., and Cullen, P.J. (2014). Applications of cold plasma technology in food packaging. Trends Food Sci. Technol. 35, 5–17.10.1016/j.tifs.2013.10.009Search in Google Scholar

Park, G.Y., Park, S.J., Choi, M.Y., Koo, I.G., Byun, J.H., Hong, J.W., Sim, J.Y., Collins, G.J., and Lee, J.K. (2012). Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci. Technol. 21, 043001.10.1088/0963-0252/21/4/043001Search in Google Scholar

Patel, R. (2005). Biofilms and antimicrobial resistance. Clin. Orthop. Relat. Res. 437, 41–47.10.1097/01.blo.0000175714.68624.74Search in Google Scholar PubMed

Pei, X., Lu, Y., Wu, S., Xiong, Q., and Lu, X. (2013). A study on the temporally and spatially resolved OH radical distribution of a room-temperature atmospheric-pressure plasma jet by laser-induced fluorescence imaging. Plasma Sources Sci. Tech. 22, 025023.10.1088/0963-0252/22/2/025023Search in Google Scholar

Peterson, P.E. (2003). World health report. Community Dent. Oral Epidemiol. 31, 3–24.10.1046/j..2003.com122.xSearch in Google Scholar

Raja Danasekaran, G.M. and Annadurai, K. (2014). Prevention of healthcare-associated infections: protecting patients, saving lives. Int. J. Community Med. Public Health 1, 67–68.10.5455/2394-6040.ijcmph20141114Search in Google Scholar

Rehman, M.U., Jawaid, P., Uchiyama, H., and Kondo, T. (2016). Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation. Arch. Biochem. Biophys. 605, 19–25.10.1016/j.abb.2016.04.005Search in Google Scholar PubMed

Reuter, S., Niemi, K., Gathen, V., and Dobele, H. (2009). Generation of atomic oxygen in the effluent of an atmospheric pressure plasma jet. Plasma Sources Sci. Technol. 18, 015006.10.1088/0963-0252/18/1/015006Search in Google Scholar

Rumbach, P., Bartels, D.M., Sankaran, R.M., and Go, D.B. (2015). The solvation of electrons by an atmospheric-pressure plasma. Nat. Commun. 6, 7248.10.1038/ncomms8248Search in Google Scholar PubMed PubMed Central

Santos, D.M.F., Sequeira, C.A.C., and Figueiredo, J.L. (2013). Hydrogen production by alkaline water electrolysis. Quim. Nova. 36, 1176–1193.10.1590/S0100-40422013000800017Search in Google Scholar

Sato, Y., Yamada, S., Takeda, S., Hattori, N., Nakamura, K., Tanaka, H., Mizuno, M., Hori, M., and Kodera, Y. (2018). Effect of plasma-activated lactated ringer’s solution on pancreatic cancer cells in vitro and in vivo. Ann. Surg. Oncol. 25, 299–307.10.1245/s10434-017-6239-ySearch in Google Scholar PubMed

Savary, S., Ficke, A., Aubertot, J.N., and Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Sec. 4, 519–537.10.1007/s12571-012-0200-5Search in Google Scholar

Shang, K., Li, J., Wang, X., Yao, D., Lu, N., Jiang, N., and Wu, Y. (2016). Evaluating the generation efficiency of hydrogen peroxide in water by pulsed discharge over water surface and underwater bubbling pulsed discharge. Jpn. J. Appl. Phys. 55, 01AB02.10.7567/JJAP.55.01AB02Search in Google Scholar

Shashurin, A., Keidar, M., Bronnikov, S., Jurjus, R., and Stepp, M. (2008). Living tissue under treatment of cold plasma atmospheric jet. Appl. Phys. Lett. 93, 181501.10.1063/1.3020223Search in Google Scholar

Shen, J., Tian, Y., Li, Y., Ma, R., Zhang, Q., Zhang, J., and Fang, J. (2016). Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci. Rep. 6, 28505.10.1038/srep28505Search in Google Scholar PubMed PubMed Central

Shi, L., Yu, L., Zou, F., Hu, H., Liu, K., and Lin, Z. (2017). Gene expression profiling and functional analysis reveals that p53 pathway-related gene expression is highly activated in cancer cells treated by cold atmospheric plasma-activated medium. Peer J. 5, e3751.10.7717/peerj.3751Search in Google Scholar PubMed PubMed Central

Siddique, S.S., Hardy, G.E. St. J., and Bayliss, K.L. (2018). Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol. 10, 1–39.10.1111/ppa.12825Search in Google Scholar

Sivachandiran, L. and Khacef, A. (2017). Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv. 7, 1822–1832.10.1039/C6RA24762HSearch in Google Scholar

Srivastava, N. and Wang, C. (2011). Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet. J. App. Phys. 110, 053304.10.1063/1.3632970Search in Google Scholar

Stewart, P.S. and Costerton, J.W. (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138.10.1016/S0140-6736(01)05321-1Search in Google Scholar

Su, X., Tian, Y., Zhou, H., Li, Y., Zhang, Z., Jiang, B., Yang, B., Zhang, J., and Fang, J. (2018). Inactivation efficacy of non-thermal plasma activated solutions against Newcastle disease virus. Appl. Environ. Microbiol. 84, e02836-17.10.1128/AEM.02836-17Search in Google Scholar

Sun, P., Wu, H., Bai, N., Zhou, H., Wang, R., Feng, H., Zhu, W., Zhang, J., and Fang, J. (2012). Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet. Plasma Process. Polym. 9, 157–164.10.1002/ppap.201100041Search in Google Scholar

Takaki, K., Takahata, J., Watanabe, S., Satta, N., Yamada, O., Fujio, T., and Sasaki, Y. (2013). Improvements in plant growth rate using underwater discharge. J. Phys. Conf. Ser. 418, 012140.10.1088/1742-6596/418/1/012140Search in Google Scholar

Takeda, S., Yamada, S., Hattori, N., Nakamura, K., Tanaka, H., Kajiyama, H., Kanda, M., Kobayashi, D., Tanaka, C., Fujii, T, et al. (2017). Intraperitoneal administration of plasma-activated medium: proposal of a novel treatment option for peritoneal metastasis from gastric cancer. Ann. Surg. Oncol. 24, 1188–1194.10.1245/s10434-016-5759-1Search in Google Scholar PubMed

Tanaka, H. (2012). Cell survival and proliferation signaling pathways are downregulated by plasma-activated medium in glioblastoma brain tumor cells. Plasma Med. 2, 207–220.10.1615/PlasmaMed.2013008267Search in Google Scholar

Tanaka, H., Mizuno, M., Ishikawa, K., Takeda, K., Nakamura, K., Utsumi, F., Kajiyama, H., Kano, H., Okazaki, Y., Toyokuni, S., et al. (2014). Plasma medical science for cancer therapy: towards cancer therapy using nonthermal atmospheric plasma. IEEE Trans. Plasma Sci. 42, 3760.10.1109/TPS.2014.2353659Search in Google Scholar

Tanaka, H., Mizuno, M., Toyokuni, S., Maruyama, S., Kodera, Y., Terasaki, H., Adachi, T., Kato, M., Kikkawa, F., and Hori, M. (2015a). Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density. Phys. Plasmas 22, 122003.10.1063/1.4933402Search in Google Scholar

Tanaka, H., Mizuno, M., Ishikawa, K., Kondo, H., Takeda, K., Hashizume, H., Nakamura, K., Utsumi, F., Kajiyama, H., Kano, H., et al. (2015b). Plasma with high electron density and plasma-activated medium for cancer treatment. Clin. Plasma Med. 3, 71–76.10.1016/j.cpme.2015.09.001Search in Google Scholar

Tanaka, H., Nakamura, K., Mizuno, M., Ishikawa, K., Takeda, K., Kajiyama, H., Utsumi, F., Kikkawa, F., and Hori, M. (2016). Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects. Sci. Rep. 6, 36282.10.1038/srep36282Search in Google Scholar PubMed PubMed Central

Thirumdas, R. (2018). Exploitation of cold plasma technology for enhancement of seed germination. Agri. Res. Tech. 13, 1–4.10.19080/ARTOAJ.2018.13.555874Search in Google Scholar

Thiyagarajan, M., Sarani, A., and Nicula, C. (2013). Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications. J. Appl. Phys. 113, 233302.10.1063/1.4811339Search in Google Scholar

Toyokuni, S. (2016). The origin and future of oxidative stress pathology: from the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol. Int. 66, 245–259.10.1111/pin.12396Search in Google Scholar PubMed

Traylor, M.J., Pavlovich, M.J., Karim, S., Hait, P., Sakiyama, Y., Clark, D.S., and Graves, D.B. (2011). Long-term antibacterial efficacy of air plasma-activated water. J. Phys. D Appl. Phys. 44, 472001.10.1088/0022-3727/44/47/472001Search in Google Scholar

Tredwin, C., Naik, S., Lewis, N., and Scully, C. (2006). Hydrogen peroxide tooth-whitening (bleaching) products: review of adverse effects and safety issues. Br. Dent. J. 200, 371–376.10.1038/sj.bdj.4813423Search in Google Scholar PubMed

Tresp, H., Hammer, M., Winter, J., Weltmann, K., and Reuter, S. (2013). Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy. J. Phys. D Appl. Phys. 46, 435401.10.1088/0022-3727/46/43/435401Search in Google Scholar

Tripathi, P. and Dubey, N. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Technol. 32, 235–245.10.1016/j.postharvbio.2003.11.005Search in Google Scholar

Troyano, A., Sancho, P., Fernandez, C., Blas, E., Bernardi, P., and Aller, P. (2003). The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death Differ. 10, 889–898.10.1038/sj.cdd.4401249Search in Google Scholar PubMed

Tsutsui, C., Lee, M., Takahashi, G., Murata, S., Hirata, T., Kanai, T., and Mori, A. (2014). Treatment of cardiac disease by inhalation of atmospheric pressure plasma. Jpn. J. Appl. Phys. 53, 060309.10.7567/JJAP.53.060309Search in Google Scholar

Uchida, G., Nakajima, A., Ito, T., Takenaka, K., Kawasaki, T., Koga, K., Shiratani, M., and Setsuhara, Y. (2016). Effects of nonthermal plasma jet irradiation on the selective production of H2O2 and NO2 in liquid water. J. Appl. Phys. 120, 203302.10.1063/1.4968568Search in Google Scholar

Uchida, G., Takenaka, K., Takeda, K., Ishikawa, K., Hori, M., and Setsuhara, Y. (2017). Selective production of reactive oxygen and nitrogen species in the plasma-treated water by using a nonthermal high-frequency plasma jet. Jpn. J. Appl. Phys. 57, 0102B4.10.7567/JJAP.57.0102B4Search in Google Scholar

Ueda, M., Yamagami, D., Watanabe, K., Mori, A., Kimura, H., Sano, K., Saji, H., Ishikawa, K., Mori, M., Sakakita, H., et al. (2015). Histological and nuclear medical comparison of inflammation after hemostasis with non-thermal plasma and thermal coagulation. Plasma Process. Polym. 12, 1338–1342.10.1002/ppap.201500099Search in Google Scholar

Uhm, H. (2015). Generation of various radicals in nitrogen plasma and their behavior in media. Phys. Plasmas 22, 123506.10.1063/1.4936796Search in Google Scholar

United Nations, Department of Economic and Social Affairs, Population Division. (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241.Search in Google Scholar

Utsumi, F., Kajiyama, H., Nakamura, K., Tanaka, H., Mizuno, M., Ishikawa, K., Kondo, H., Kano, H., Hori, M., and Kikkawa, F. (2013). Effect of indirect non-equilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One 8, e81576.10.1371/journal.pone.0081576Search in Google Scholar PubMed PubMed Central

Van-Gils, C.A.J., Hofmann, S., Boekema, B.K.H.L., Brandenburg, R., and Bruggeman, P.J. (2013). Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 46, 1–14.10.1088/0022-3727/46/17/175203Search in Google Scholar

Verlackt, C., Boxem, W., and Bogaerts, A. (2018). Transport and accumulation of plasma generated species in aqueous solution. Phys. Chem. Chem. Phys. 20, 6845–6859.10.1039/C7CP07593FSearch in Google Scholar

Vlad, I.E. and Anghel, S.D. (2017). Time stability of water activated by different on-liquid atmospheric pressure plasmas. J. Electrostat. 87, 284–292.10.1016/j.elstat.2017.06.002Search in Google Scholar

Vyhnankova, E., Kozakova, Z., Krcma, F., and Hrdlicka, A. (2014). Influence of electrode material on hydrogen peroxide generation by DC pinhole discharge. Open Chem. 13, 218–223.10.1515/chem-2015-0054Search in Google Scholar

Wang, M., Holmes, B., Cheng, X., Zhu, W., Keidar, M., and Zhang, L.G. (2013). Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One 8, e73741.10.1371/journal.pone.0073741Search in Google Scholar PubMed PubMed Central

Weller, R., Price, R.J., Ormerod, A.D., Benjamin, N., and Leifert, C. (2001). Microbial effect of acidified nitrite on dermatophyte fungi, Candida and bacterial skin pathogens. J. Appl. Microbiol. 90, 648–652.10.1046/j.1365-2672.2001.01291.xSearch in Google Scholar PubMed

Weltmann, K.-D. and von Woedtke, T. (2017). Plasma medicine – current state of research and medical application. Plasma Phys. Control. Fusion 59, 014031.10.1088/0741-3335/59/1/014031Search in Google Scholar

Winter, J., Brandenburg, R., and Weltmann, K. (2015). Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci. Technol. 24, 064001.10.1088/0963-0252/24/6/064001Search in Google Scholar

Xiang, J., Wan, C., Guo, R., and Guo, D. (2016). Is hydrogen peroxide a suitable apoptosis inducer for all cell types? BioMed. Res. Int. 2016, 7343965.10.1155/2016/7343965Search in Google Scholar PubMed PubMed Central

Xiong, Q., Yang, Z., and Bruggeman, P. (2015). Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy. J. Phys. D Appl. Phys. 48, 424008.10.1088/0022-3727/48/42/424008Search in Google Scholar

Xu, Y., Tian, Y., Mab, R., Liu, Q., and Zhang, J. (2016). Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem. 197, 436–444.10.1016/j.foodchem.2015.10.144Search in Google Scholar PubMed

Yan, D.Y., Sherman, J.H., Cheng X.Q., Ratovitski, E., Canady, J., and Keidar, M. (2014). Controlling plasma stimulated media in cancer treatment application. Appl. Phys. Lett. 105, 224101.10.1063/1.4902875Search in Google Scholar

Yan, D., Talbot, A., Nourmohammadi, N., Sherman, J.H., Cheng, X., and Keidar, M. (2015). Toward understanding the selective anticancer capacity of cold atmospheric plasma – a model based on aquaporins. Biointerphases 10, 040801.10.1116/1.4938020Search in Google Scholar PubMed

Yan, D., Cui, H., Zhu, W., Nourmohammadi, N., Milberg, J., Zhang, L.G., Sherman, J.H., and Keidar, M. (2017). The specific vulnerabilities of cancer cells to the cold atmospheric plasma-stimulated solutions. Sci. Rep. 7, 4479.10.1038/s41598-017-04770-xSearch in Google Scholar PubMed PubMed Central

Ye, F., Kaneko, H., Nagasaka, Y., Ijima, R., Nakamura, K., Nagaya, M., Takayama, K., Kajiyama, H., Senga, T., Tanaka, H., et al. (2015). Plasma-activated medium suppresses choroidal neovascularization in mice: a new therapeutic concept for age-related macular degeneration. Sci. Rep. 5, 1–7.10.1038/srep07705Search in Google Scholar PubMed PubMed Central

Yousfi, M., Merbahi, N., Pathak, A., and Eichwald, O. (2014). Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine. Fundam. Clin. Pharmacol. 28, 123–135.10.1111/fcp.12018Search in Google Scholar PubMed

Yue, Y., Pei, X., and Lu, X. (2016a). OH density optimization in atmospheric-pressure plasma jet by using multiple ring electrodes. J. Appl. Phys. 119, 033301.10.1063/1.4940206Search in Google Scholar

Yue, Y., Xian, Y., Pei, X., and Lu, X. (2016b). The effect of three different methods of adding O2 additive on O concentration of atmospheric pressure plasma jets (APPJs). Phys. Plasmas 23, 123503.10.1063/1.4971228Search in Google Scholar

Zhang, Q., Sun, P., Feng, H., Wang, R., Liang, L., Zhu, W., Becker, K., Zhang, J., and Fang, J. (2012). Assessment of the role of various inactivation agents in an argon based direct current atmospheric pressure cold plasma jet. J. Appl. Phys. 111, 123305.10.1063/1.4730627Search in Google Scholar

Zhang, Q., Liang, Y., Feng, H., Ma, R., Tian, Y., Zhang, J., and Fang, J. (2013). A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Appl. Phys. Lett. 102, 1–4.10.1109/PLASMA.2013.6633407Search in Google Scholar

Zhang, Q., Ma, R., Tian, Y., Su, B., Wang, K., Yu, S., Zhang, J., and Fang, J. (2016). Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 50, 3184–3192.10.1021/acs.est.5b05108Search in Google Scholar PubMed

Zhang, S., Rousseau, A., and Dufour, T. (2017). Promoting lentil germination and stem growth by plasma activated tap water, demineralized water and liquid fertilizer. RSC Adv. 7, 31244–31251.10.1039/C7RA04663DSearch in Google Scholar

Received: 2018-04-18
Accepted: 2018-07-11
Published Online: 2018-07-24
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.9.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2018-0226/html
Scroll to top button