Home NiMo 4.0 – Enabling advanced data analytics with AI for environmental governance in the water domain
Article
Licensed
Unlicensed Requires Authentication

NiMo 4.0 – Enabling advanced data analytics with AI for environmental governance in the water domain

  • Matthias Budde

    Dr.-Ing. Matthias Budde received both a graduate degree and a Ph.D. in Computer Science from Karlsruhe Institute of Technology (KIT). Since 2020, he has been working in research and innovation at Disy Informationssysteme GmbH. His past research topics include environmental sensing/AI, mobile computing, internet of things (IoT), and human-computer-interaction (HCI).

    EMAIL logo
    , Desiree Hilbring

    Dr.-Ing. Desiree Hilbring has a degree in Geodesy. In her research at Fraunhofer IOSB, she dealt with system architectures based on open geodata standards, which have been applied for the development of information systems in the environmental sector or in crisis management. In recent years, the main focus has been on the application and integration of AI in corresponding systems.

    , Jonathan Vogl

    Jonathan Vogl received a M. Sc. in Mathematics from Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. His research interests include environment-related topics in computer science, in particular on data-driven approaches, as well as systems and software engineering.

    , Daniel Dittmar

    Daniel Dittmar received a M.Sc. in Mathematics from Karlsruhe Institut of Technologie (KIT), Karlsruhe, Germany in 2017. He has since been passionate about software development, especially focusing on spatial data processing and visualization.

    and Andreas Abecker

    Dr. rer. pol. Dipl.-Inform. Andreas Abecker has been working with the German Research Center for Artificial Intelligence (DFKI Kaiserslautern) and the FZI Research Center for Information Technologies (Karlsruhe). Since 2010, he is Head of Innovation Management at Disy Informationssysteme GmbH. His research topics include GeoAI, Big Spatial Data and AI for environment informatics.

Published/Copyright: June 25, 2024

Abstract

In the realm of environmental governance, civil servants confront a plethora of diverse datasets, including time series, geospatial vector data, and raster data. However, unlocking the transformative potential of Artificial Intelligence (AI) models to analyze this data poses the challenge of a widening technical proficiency gap in public administration. This paper explores the intersection of expanding environmental datasets and advanced analytics. Through a real-world project lens, our work aims to guide public administration entities, fostering seamless integration of AI-driven analytics and data-driven decision-making. We present a modular technical architecture that proposes pragmatic solutions that have the potential to empower civil servants. This approach contributes to accelerating environmental governance into an era of more informed and efficient, data-driven practices.

Zusammenfassung

Im Bereich der Umweltüberwachung sehen sich Verwaltungen zunehmend mit einer Fülle unterschiedlicher Datensätze konfrontiert, darunter Zeitreihen und räumliche Vektor- und Rasterdaten. Die Erschließung des transformativen Potenzials von Modellen der Künstlichen Intelligenz (KI) zur Analyse dieser Daten stellt jedoch eine Herausforderung dar, da sich die technische Kompetenzlücke in der öffentlichen Verwaltung vergrößert. In diesem Beitrag wird die Schnittstelle zwischen wachsenden Umweltdatensätzen und fortschrittlicher Analytik untersucht. Die vorliegende Arbeit zielt darauf ab, die öffentliche Verwaltung zu befähigen und die nahtlose Integration von KI-gestützter Analyse und datengestützter Entscheidungsfindung zu fördern. Wir präsentieren eine modulare technische Architektur, die pragmatische Lösungen präsentiert, die das Potenzial haben, KI in der Verwaltung einfacher nutzbar zu machen. Dieser Ansatz trägt dazu bei, die Umweltüberwachung einen Schritt in eine Ära informierterer und effizienterer, datengesteuerter Praktiken zu führen.


Corresponding author: Matthias Budde, Disy Informationssysteme GmbH, Ludwig-Erhardt-Allee 6, 76131 Karlsruhe, Germany, E-mail:

About the authors

Matthias Budde

Dr.-Ing. Matthias Budde received both a graduate degree and a Ph.D. in Computer Science from Karlsruhe Institute of Technology (KIT). Since 2020, he has been working in research and innovation at Disy Informationssysteme GmbH. His past research topics include environmental sensing/AI, mobile computing, internet of things (IoT), and human-computer-interaction (HCI).

Desiree Hilbring

Dr.-Ing. Desiree Hilbring has a degree in Geodesy. In her research at Fraunhofer IOSB, she dealt with system architectures based on open geodata standards, which have been applied for the development of information systems in the environmental sector or in crisis management. In recent years, the main focus has been on the application and integration of AI in corresponding systems.

Jonathan Vogl

Jonathan Vogl received a M. Sc. in Mathematics from Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. His research interests include environment-related topics in computer science, in particular on data-driven approaches, as well as systems and software engineering.

Daniel Dittmar

Daniel Dittmar received a M.Sc. in Mathematics from Karlsruhe Institut of Technologie (KIT), Karlsruhe, Germany in 2017. He has since been passionate about software development, especially focusing on spatial data processing and visualization.

Andreas Abecker

Dr. rer. pol. Dipl.-Inform. Andreas Abecker has been working with the German Research Center for Artificial Intelligence (DFKI Kaiserslautern) and the FZI Research Center for Information Technologies (Karlsruhe). Since 2010, he is Head of Innovation Management at Disy Informationssysteme GmbH. His research topics include GeoAI, Big Spatial Data and AI for environment informatics.

Acknowledgments

The NiMo 4.0 consortium wishes to thank all organizations that provided data as a basis for both AI research as well as system development.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was partially funded by the German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) as part of the program “KI-Leuchttüurme” [43], project “NiMo 4.0” [6] (grant number 67KI2048).

  5. Data availability: Not applicable.

References

[1] E. Challies and J. Newig, “What is ‘environmental governance’? A working definition,” 2019. Available at: https://sustainability-governance.net/2019/06/14/what-is-environmental-governance-a-working-definition/ Accessed: Apr. 09, 2024.Search in Google Scholar

[2] K. Bakker and M. Ritts, “Smart earth: a meta-review and implications for environmental governance,” Glob. Environ. Change, vol. 52, pp. 201–211, 2018. https://doi.org/10.1016/j.gloenvcha.2018.07.011.Search in Google Scholar

[3] J. E. Goldstein and H. O. Faxon, “New data infrastructures for environmental monitoring in Myanmar: is digital transparency good for governance?” Environ. Plan. E: Nat. Space vol. 5, no. 1, pp. 39–59, 2022. https://doi.org/10.1177/2514848620943892.Search in Google Scholar

[4] K. Xu, “Artificial intelligence unlocks ecological environment governance—smart statistical monitoring based on meteorology,” Multimed. Tools Appl., vol. 82, no. 14, pp. 21613–21625, 2023. https://doi.org/10.1007/s11042-023-14685-7.Search in Google Scholar

[5] M. Tironi and D. I. R. Lisboa, “Artificial intelligence in the new forms of environmental governance in the chilean state: towards an eco-algorithmic governance,” Technol. Soc., vol. 74, 2023, Art. no. 102264. https://doi.org/10.1016/j.techsoc.2023.102264.Search in Google Scholar

[6] T. Liesch, et al.., “Nitrat-Monitoring 4.0 – Intelligente Systeme zur nachhaltigen Reduzierung von Nitrat im Grundwasser,” in INFORMATIK 2020, Bonn, GI, 2021, pp. 1069–1079.Search in Google Scholar

[7] C. Markert, J. Bruns, M. Budde, F. Lott, and A. Abecker, “Konzept und Prototyp für ein räumliches Entscheidungsunterstützungssystem,” in Umweltinformationssysteme – Wie trägt die Digitalisierung zur Nachhaltigkeit bei? Wiesbaden, Springer Fachmedien Wiesbaden, 2022, pp. 245–262.10.1007/978-3-658-35685-9_14Search in Google Scholar

[8] Li Jin and A. D. Heap, “Spatial interpolation methods applied in the environmental sciences: a review,” Environ. Model. Softw., vol. 53, pp. 173–189, 2014. https://doi.org/10.1016/j.envsoft.2013.12.008.Search in Google Scholar

[9] S. Janssen, G. Dumont, F. Fierens, and C. Mensink, “Spatial interpolation of air pollution measurements using corine land cover data,” Atmos. Environ., vol. 42, no. 20, pp. 4884–4903, 2008. https://doi.org/10.1016/j.atmosenv.2008.02.043.Search in Google Scholar

[10] P. Tremper, T. Riedel, and M. Budde, “Spatial interpolation of air quality data with multidimensional Gaussian processes,” in INFORMATIK, 2021, vol. 2021.Search in Google Scholar

[11] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessellations: applications and algorithms,” SIAM Rev., vol. 41, no. 4, pp. 637–676, 1999. https://doi.org/10.1137/s0036144599352836.Search in Google Scholar

[12] D. Shepard, “A two-dimensional interpolation function for irregularly-spaced data,” in Proceedings of the 1968 23rd ACM National Conference, 1968, pp. 517–524.10.1145/800186.810616Search in Google Scholar

[13] L. O. Paul, M. Bach, and L. Breuer, “Accuracy assessment of inverse distance weighting interpolation of groundwater nitrate concentrations in bavaria (Germany),” in Environmental Science and Pollution Research, 2023.Search in Google Scholar

[14] M. Ohmer, F. Doll, and T. Liesch, “Incorporating spatial information for regionalization of hydrogeological parameters in machine learning models,” in EGU General Assembly 2023, 2023.10.5194/egusphere-egu23-12842Search in Google Scholar

[15] D. Karimanzira, J. Weis, A. Wunsch, L. Ritzau, T. Liesch, and M. Ohmer, “Application of machine learning and deep neural networks for spatial prediction of groundwater nitrate concentration to improve land use management practices,” Front. Water, vol. 5, 2023, https://doi.org/10.3389/frwa.2023.1193142.Search in Google Scholar

[16] D. G. Krige, “A statistical approach to some basic mine valuation problems on the witwatersrand,” J. South. Afr. Inst. Min. Metall., vol. 52, no. 6, pp. 119–139, 1951.Search in Google Scholar

[17] K. Manohar, B. W. Brunton, J. Nathan Kutz, and S. L. Brunton, “Data-driven sparse sensor placement for reconstruction: demonstrating the benefits of exploiting known patterns,” IEEE Control Syst. Mag., vol. 38, no. 3, pp. 63–86, 2018.10.1109/MCS.2018.2810460Search in Google Scholar

[18] M. Ohmer, T. Liesch, and A. Wunsch, “Spatiotemporal optimization of groundwater monitoring networks using data-driven sparse sensing methods,” Hydrol. Earth Syst. Sci., vol. 26, no. 15, pp. 4033–4053, 2022. https://doi.org/10.5194/hess-26-4033-2022.Search in Google Scholar

[19] M. Wagner, “Analyse von Wasserverlusten mit Mustererkennungsverfahren,” Wasserwirtsch. Wassertech., vol. 71, pp. 36–40, 2022. https://doi.org/10.51202/1438-5716-2022-10-036.Search in Google Scholar

[20] K. Emde, M. Budde, T. Fischer, T. Martin, and D. Hilbring, “Interaktive Steuerung der Ausführung von KI-Algorithmen in Umweltinformationssystemen über OGC SensorThings,” in INFORMATIK 2022, D. Demmler, D. Krupka, and H. Federrath, Eds., Bonn, GI, 2022, pp. 1517–1527.Search in Google Scholar

[21] A complete server implementation of the OGC SensorThings API. Available at: https://github.com/FraunhoferIOSB/FROST-Server Accessed: Feb. 09, 2024.Search in Google Scholar

[22] S. Liang, C.-Y. Huang, and T. Khalafbeigi, OGC SensorThings API Part 1: Sensing, Version 1.0, 2016.Search in Google Scholar

[23] S. Liang and T. Khalafbeigi, OGC SensorThings API Part 2: Tasking Core, Version 1.0, 2019.10.62973/18-056Search in Google Scholar

[24] M. Budde, et al.., “Smartaqnet: remote and in-situ sensing of urban air quality,” in Remote Sensing of Clouds and the Atmosphere XXII, vol. 10424, SPIE, 2017, pp. 19–26.Search in Google Scholar

[25] C. Li, et al.., “Smartaqnet 2020: a new open urban air quality dataset from heterogeneous pm sensors,” ProScience, vol. 8, 2022.Search in Google Scholar

[26] S. Trilles, A. Luján, Ó. Belmonte, R. Montoliu, J. Torres-Sospedra, and J. Huerta, “Senviro: a sensorized platform proposal using open hardware and open standards,” Sensors, vol. 15, no. 3, pp. 5555–5582, 2015. https://doi.org/10.3390/s150305555.Search in Google Scholar PubMed PubMed Central

[27] H. van Der Schaaf, J. Mossgraber, S. Grellet, M. Beaufils, K. Schleidt, and T. Usländer, “An environmental sensor data suite using the ogc sensorthings api,” in Environmental Software Systems. Data Science in Action: 13th IFIP WG 5.11 International Symposium, ISESS 2020, Wageningen, The Netherlands, February 5–7, 2020, Proceedings 13, Springer, 2020, pp. 228–241.10.1007/978-3-030-39815-6_22Search in Google Scholar

[28] Y.-H. Chiang, C.-Y. Huang, and M. Fuse, “The integration of ogc sensorthings api and ogc citygml via semantic web technology,” in Web and Wireless Geographical Information Systems: 18th International Symposium, W2GIS 2020, Wuhan, China, November 13–14, 2020, Proceedings 18, Springer, 2020, pp. 55–67.10.1007/978-3-030-60952-8_6Search in Google Scholar

[29] M. Fischer, P. Gras, S. Löwa, and S. Schuhart, “Urban Data Platform Hamburg: Integration von Echtzeit IoT-Daten mittels SensorThings API,” in ZfV-Zeitschrift für Geodäsie, Geoinformation und Landmanagement (zfv 1/2021), 2021.Search in Google Scholar

[30] Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB. FROST®-Server – An Open Source Implementation of OGC SensorThings API. Available at: https://www.iosb.fraunhofer.de/en/projects-and-products/frost-server.html Accessed: Feb. 09, 2024.Search in Google Scholar

[31] Disy Informationssysteme GmbH, “Data analysis software with reporting and GIS.” Available at: https://www.disy.net/en/products/disy-cadenza/overview/ Accessed: Feb. 09, 2024.Search in Google Scholar

[32] Open Source Geospatial Foundation, GeoServer. Available at: https://www.geoserver.org Accessed: Feb. 09, 2024.Search in Google Scholar

[33] MinIO, Inc, “MinIO|S3 & Kubernetes native object storage for AI.” Available at: https://min.io/ Accessed: Feb. 09, 2024.Search in Google Scholar

[34] S. Preidl, M. Lange, and D. Doktor, “Introducing apic for regionalised land cover mapping on the national scale using sentinel-2a imagery,” Remote Sens. Environ., vol. 240, 2020, Art. no. 111673. https://doi.org/10.1016/j.rse.2020.111673.Search in Google Scholar

[35] J. H. Von Thünen, Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonomie, Walter de Gruyter GmbH & Co KG, 2022.Search in Google Scholar

[36] G. Riembauer, A. Weinmann, S. Xu, S. Eichfuss, C. Eberz, and M. Neteler, “Germany-wide sentinel-2 based land cover classification and change detection for settlement and infrastructure monitoring,” in Proceedings of the 2021 Conference on Big Data from Space, Virtual, 2021, pp. 18–20.Search in Google Scholar

[37] Corine Land Cover, Corine Land Cover, Copenhagen, European Environment Agency, 2000.Search in Google Scholar

[38] P. Hertweck, H. van der Schaaf, D. Hilbring, J. Weis, T. Liesch, and M. Budde, “Integration von KI-Algorithmen in Umweltinformationssysteme mittels SensorThings API,” in INFORMATIK 2021, Bonn, GI, 2021, pp. 301–312.Search in Google Scholar

[39] W. Laurito, J. Höllig, J. Lachowitzer, S. Thoma, M. Budde, and P. Philipp, “Aida-vis–automatic data visualization with human preferences,” in INFORMATIK, 2022, vol. 2022.Search in Google Scholar

[40] T. Röddiger, M. Beigl, D. Dörner, and M. B. Responsible, “Automated data gathering for timely citizen dashboard provision during a global pandemic (covid-19),” Digit. Govern. Res. Pract., vol. 2, no. 1, pp. 1–9, 2020. https://doi.org/10.1145/3428471.Search in Google Scholar

[41] Open Geospatial Consortium, OGC Geotech Interoperability Experiment: Call for Participation (CFP). Available at: https://portal.ogc.org/files/?artifact_id=99912 Accessed: Feb. 19, 2024.Search in Google Scholar

[42] A. Abecker, et al.., “Überlegungen zu einer Infrastruktur für die breite Nutzung von Machine-Learning Verfahren in der Umweltverwaltung,” in Umweltinformationssysteme 2024: Digitalisierung für eine nachhaltige Planetare Zukunft – 31. Workshop von AK/FG UIS in der GI, Bamberg, 2024. Forthcoming.Search in Google Scholar

[43] Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV), KI-Leuchttürme für Umwelt, Klima, Natur und Ressourcen. Available at: https://www.bmuv.de/programm?tx_bmubfundingdb_programs[program]=25 Accessed: Jan. 26, 2024.Search in Google Scholar

Received: 2024-02-18
Accepted: 2024-04-17
Published Online: 2024-06-25
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.8.2025 from https://www.degruyterbrill.com/document/doi/10.1515/auto-2024-0034/html
Scroll to top button