Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 16, 2022

Model predictive control for retinal laser treatment at 1 kHz

  • Manuel Schaller EMAIL logo , Viktoria Kleyman , Mario Mordmüller , Christian Schmidt , Mitsuru Wilson , Ralf Brinkmann , Matthias A. Müller and Karl Worthmann

Abstract

Laser photocoagulation is a technique applied in the treatment of retinal disease, which is often done manually or using simple control schemes. We pursue an optimization-based approach, namely Model Predictive Control (MPC), to enforce bounds on the peak temperature and, thus, to ensure safety during the medical treatment procedure – despite the spot-dependent absorption of the tissue. The desired laser repetition rate of 1 kHz is renders the requirements on the computation time of the MPC feedback a major challenge. We present a tailored MPC scheme using parametric model reduction, an extended Kalman filter for the parameter and state estimation, and suitably tuned stage costs and verify its applicability both in simulation and experiments with porcine eyes. Moreover, we give some insight on the implementation specifically tailored for fast numerical computations.

Zusammenfassung

Laserphotokoagulation ist eine Technik, die bei der Behandlung von Netzhauterkrankungen eingesetzt wird. Während dies oft manuell oder mit einfachen Kontrollschemata geschieht, verfolgen wir einen optimierungsbasierten Ansatz mittels Modellprädiktiver Regelung (Model Predictive Control; MPC), um Schranken für die Spitzentemperatur und damit für die Sicherheit während des medizinischen Behandlungsverfahrens zu erzwingen – trotz der vom Behandlungspunkt abhängigen Absorption des Gewebes. Zu diesem Zweck ist eine Wiederholungsrate von 1 kHz wünschenswert, was die Echtzeitanforderungen zu einer großen Herausforderung macht. Wir stellen ein maßgeschneidertes MPC-Schema mittels einer parametrischen Modellreduktion, einem erweiterten Kalman-Filter für die Parameter-und Zustandsschätzung, sowie geeignet konstruierte Stufenkosten vor und verifizieren seine Anwendbarkeit sowohl in Simulation als auch in Experimenten mit Schweineaugen. Außerdem geben wir einen Einblick in die Implementierung, die speziell für schnelle numerische Berechnungen zugeschnitten ist.


Corresponding author: Manuel Schaller, Optimization-Based Control group, Institute of Mathematics, Technische Universität Ilmenau, Ilmenau, Germany, E-mail:

Acknowledgment

The collaborative project “Temperature controlled retinal laser treatment” is funded by the German Research Foundation (DFG) under the project number 430154635 (MU 3929/3-1, WO 2056/7-1, BR 1349/6-1). Karl Worthmann gratefully acknowledges funding by the German Research Foundation (DFG; grant WO 2056/6-1, project number 406141926).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] G. Meyer-Schwickerath, “Lichtkoagulation,” Albrecht von Graefes Archiv für Ophthalmologie, vol. 156, no. 1, pp. 2–34, 1954.10.1007/BF00703328Search in Google Scholar

[2] Early Treatment Diabetic Retinopathy Study Research Group and others, “Early photocoagulation for diabetic retinopathy: ETDRS report number 9,” Ophthalmology, vol. 98, no. 5, pp. 766–785, 1991.10.1016/S0161-6420(13)38011-7Search in Google Scholar

[3] Early Treatment Diabetic Retinopathy Study Research Group and others, “Photocoagulation for diabetic macular edema,” Arch. Ophthalmol., vol. 103, pp. 1796–1806, 1985.10.1001/archopht.1985.01050120030015Search in Google Scholar

[4] J. K Luttrull and G. Dorin, “Subthreshold diode micropulse laser photocoagulation (sdm) as invisible retinal phototherapy for diabetic macular edema: a review,” Curr. Diabetes Rev., vol. 8, no. 4, pp. 274–284, 2012. https://doi.org/10.2174/157339912800840523.Search in Google Scholar PubMed PubMed Central

[5] D. Lavinsky, C. Sramek, J. Wang, et al.., “Subvisible retinal laser therapy: titration algorithm and tissue response,” Retina, vol. 34, no. 1, pp. 87–97, 2014. https://doi.org/10.1097/iae.0b013e3182993edc.Search in Google Scholar PubMed

[6] R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, and M. Bever, “Real-time temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt., vol. 17, no. 6, p. 061219, 2012. https://doi.org/10.1117/1.jbo.17.6.061219.Search in Google Scholar

[7] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms, London, Springer Verlag, 2016.10.1007/978-3-319-46024-6Search in Google Scholar

[8] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control: Theory, Computation, and Design, vol. 2, Madison, WI, Nob Hill Publishing, 2017.Search in Google Scholar

[9] A. Baade, C. von der Burchard, M. Lawin, et al.., “Power-controlled temperature guided retinal laser therapy,” J. Biomed. Opt., vol. 22, no. 11, p. 118001, 2017. https://doi.org/10.1117/1.jbo.22.11.118001.Search in Google Scholar PubMed

[10] C. Herzog, O. Thomsen, B. Schmarbeck, M. Siebert, and R. Brinkmann, “Temperature-controlled laser therapy of the retina via robust adaptive H∞${\mathcal{H}}_{\infty }$ -control,” Automatisierungstechnik, vol. 66, no. 12, pp. 1051–1063, 2018. https://doi.org/10.1515/auto-2018-0066.Search in Google Scholar

[11] M. Schaller, M. Wilson, V. Kleyman, et al.., “Parameter estimation and model reduction for model predictive control in retinal laser treatment,” Control Eng. Pract., vol. 128, p. 105320, 2022. https://doi.org/10.1016/j.conengprac.2022.105320.Search in Google Scholar

[12] V. Kleyman, H. Gernandt, K. Worthmann, H. S. Abbas, R. Brinkmann, and M. A. Müller, “Modeling and parameter identification for real-time temperature controlled retinal laser therapies,” Automatisierungstechnik, vol. 68, pp. 953–966, 2020. https://doi.org/10.1515/auto-2020-0074.Search in Google Scholar

[13] V. Kleyman, M. Schaller, M. Wilson, et al.., “State and parameter estimation for model-based retinal laser treatment,” IFAC-PapersOnLine, vol. 54, no. 6, pp. 244–250, 2021. https://doi.org/10.1016/j.ifacol.2021.08.552.Search in Google Scholar

[14] M. Mordmüller, V. Kleyman, M. Schaller, et al.., “Towards temperature controlled retinal laser treament with a single 10 kHz laser,” Adv. Opt. Technol., vol. 10, no. 6, pp. 423–431, 2021.10.1515/aot-2021-0041Search in Google Scholar

[15] S. Chaturantabut and D. C. Sorensen, “Nonlinear model reduction via discrete empirical interpolation,” SIAM J. Sci. Comput., vol. 32, no. 5, pp. 2737–2764, 2010. https://doi.org/10.1137/090766498.Search in Google Scholar

[16] P. Benner, S. Gugercin, and K. Willcox, “A survey of projection-based model reduction methods for parametric dynamical systems,” SIAM Rev., vol. 57, no. 4, pp. 483–531, 2015. https://doi.org/10.1137/130932715.Search in Google Scholar

[17] C. K. Chui and G. Chen, Kalman Filtering, Berlin, Springer International Publishing, 2017.10.1007/978-3-319-47612-4Search in Google Scholar

[18] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an operator splitting solver for quadratic programs,” Math. Program. Comput., vol. 12, no. 4, pp. 637–672, 2020. https://doi.org/10.1007/s12532-020-00179-2.Search in Google Scholar

[19] V. Kleyman, M. Schaller, M. Mordmüller, et al.., “State and parameter estimation for retinal laser treatment,” 2022, Submitted, Preprint: arXiv:2203.12452.10.1109/TCST.2022.3228442Search in Google Scholar

[20] J. Lorenzetti, B. Landry, S. Singh, and M. Pavone, “Reduced order model predictive control for setpoint tracking,” in 2019 18th European Control Conference (ECC), IEEE, 2019, pp. 299–306.10.23919/ECC.2019.8796005Search in Google Scholar

[21] M. Koegel and R. Findeisen, “Robust output feedback model predictive control using reduced order models,” IFAC-PapersOnLine, vol. 48–8, pp. 1008–1014, 2015. https://doi.org/10.1016/j.ifacol.2015.09.100.Search in Google Scholar

[22] L. Grüne, J. Pannek, M. Seehafer, and K. Worthmann, “Analysis of unconstrained nonlinear MPC schemes with time varying control horizon,” SIAM J. Control Optim., vol. 48, no. 8, pp. 4938–4962, 2010. https://doi.org/10.1137/090758696.Search in Google Scholar

[23] L. Grüne, J. Pannek, and K. Worthmann, “A networked unconstrained nonlinear MPC scheme,” in 2009 European Control Conference (ECC), IEEE, 2009, pp. 371–376.10.23919/ECC.2009.7074430Search in Google Scholar

[24] K. Worthmann, M. Reble, and F. Grüne, “Lars an Allgöwer. The role of sampling for stability and performance in unconstrained nonlinear model predictive control,” SIAM J. Control Optim., vol. 52, no. 1, pp. 581–605, 2014. https://doi.org/10.1137/12086652x.Search in Google Scholar

[25] K. Worthmann, M. W. Mehrez, G. K. Mann, R. G. Gosine, and J. Pannek, “Interaction of open and closed loop control in MPC,” Automatica, vol. 82, pp. 243–250, 2017. https://doi.org/10.1016/j.automatica.2017.04.038.Search in Google Scholar

[26] L. Grüne and V. G. Palma, “Robustness of performance and stability for multistep and updated multistep MPC schemes,” Discrete Contin. Dyn. Syst., vol. 35, no. 9, p. 4385, 2015. https://doi.org/10.3934/dcds.2015.35.4385.Search in Google Scholar

[27] V. G. Palma, A. Suardi, and E. C. Kerrigan, “Sensitivity-based multistep MPC for embedded systems,” IFAC-PapersOnLine, vol. 48, no. 23, pp. 360–365, 2015. https://doi.org/10.1016/j.ifacol.2015.11.306.Search in Google Scholar

[28] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme for nonlinear optimization in optimal feedback control,” SIAM J. Control Optim., vol. 43, no. 5, pp. 1714–1736, 2005. https://doi.org/10.1137/s0363012902400713.Search in Google Scholar

[29] A. Wynn, M. Vukov, and M. Diehl, “Convergence guarantees for moving horizon estimation based on the real-time iteration scheme,” IEEE Trans. Autom. Control, vol. 59, no. 8, pp. 2215–2221, 2014. https://doi.org/10.1109/tac.2014.2298984.Search in Google Scholar

[30] A. Nurkanović, A. Zanelli, S. Albrecht, and M. Diehl, “The advanced step real time iteration for NMPC,” in 2019 IEEE 58th Conference on Decision and Control (CDC), IEEE, 2019, pp. 5298–5305.10.1109/CDC40024.2019.9029543Search in Google Scholar

[31] A. Nurkanović, A. Zanelli, S. Albrecht, G. Frison, and M. Diehl, “Contraction properties of the advanced step real-time iteration for NMPC,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 7041–7048, 2020. https://doi.org/10.1016/j.ifacol.2020.12.449.Search in Google Scholar

Received: 2022-02-25
Accepted: 2022-10-13
Published Online: 2022-11-16
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.10.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2022-0030/html
Scroll to top button