Zusammenfassung
Zukünftige Regelungskonzepte werden verstärkt auf Cloud-Computing und verteiltes Rechnen setzen. In den resultierenden vernetzten Regelungssystemen werden sensible Daten über öffentliche Netzwerke kommuniziert und auf Plattformen Dritter verarbeitet. Verschlüsselte Regelungen zielen darauf ab, die Vertraulichkeit dieser Daten im gesamten Regelkreis zu sichern. Um dieses Ziel zu erreichen, werden klassische Regelungsalgorithmen so modifiziert, dass sie verschlüsselte Regeleingriffe basierend auf verschlüsselten Systemzuständen berechnen. Zum Einsatz kommen dabei homomorphe Verschlüsselungsverfahren, die einfache mathematische Operationen auf verschlüsselten Daten ermöglichen. Der Artikel erläutert die Implementierung verschlüsselter Regelungen anhand von drei wegweisenden Realisierungen in der Cloud.
Abstract
Future control schemes will increasingly rely on cloud-computing and distributed computing. In the resulting networked control systems, sensible data is communicated via public networks and processed on third party platforms. Encrypted controllers seek to secure the confidentiality of the data throughout the entire control-loop. To achieve this goal, classical control algorithms are modified such that they compute encrypted control actions based on encrypted system states. The underlying key technology are homomorphic encryption schemes that allow simple mathematical operations to be carried out on encrypted data. The article elucidates the implementation of encrypted controllers based on three seminal realizations in the cloud.
About the author
Moritz Schulze Darup ist akademischer Rat am Lehrstuhl für Regelungs- und Automatisierungstechnik der Universität Paderborn. Er baut dort aktuell eine Nachwuchsgruppe zur Entwicklung verschlüsselter Regelungskonzepte auf. Neben diesem Schwerpunktthema zielt seine Forschung auf optimierungsbasierte, robuste und vernetzte Regelungssysteme ab. Moritz Schulze Darup ist seit 2019 Mitglied des Jungen Kollegs der NRW Akademie der Wissenschaften und der Künste.
Literatur
1. A. B. Alexandru, M. Morari and G. J. Pappas. Cloud-based MPC with encrypted data. In Proceedings of the 57th Conference on Decision and Control, pages 5014–5019, 2018.10.1109/CDC.2018.8619835Search in Google Scholar
2. A. Bemporad, M. Morari, V. Dua and E. N. Pistikopoulos. The explicit linear quadratic regulator for constrained systems. Automatica, 38(1):3–20, 2002.10.1016/S0005-1098(01)00174-1Search in Google Scholar
3. J. Benaloh. Verifiable secret-ballot elections. PhD thesis, Yale Univ., Dept. of Comp. Sci., 1988.Search in Google Scholar
4. Z. Brakerski, C. Gentry and V. Vaikuntanathan. (Leveled) Fully homomorphic encryption without bootstrapping. ACM Transactions on Computation Theory, 6(3):13:1–13:36, 2014.10.1145/2090236.2090262Search in Google Scholar
5. G. Castagnos and F. Laguillaumie. Public-key cryptosystems based on composite degree residuosity classes. In Topics in Cryptology –- CT-RSA 2015, volume 9048 of Lecture Notes in Computer Science, pages 487–505. Springer, 2015.10.1007/978-3-319-16715-2_26Search in Google Scholar
6. T. M. Chen and S. Abu-Nimeh. Lessons from Stuxnet. Computer, 44(4):91–93, 2011.10.1109/MC.2011.115Search in Google Scholar
7. M. Diehl, H. G. Bock and J. P. Schlöder. A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM Journal on Control and Optimization, 43(5):1714–1736, 2005.10.1137/S0363012902400713Search in Google Scholar
8. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.10.1109/TIT.1985.1057074Search in Google Scholar
9. F. Farokhi, I. Shames and N. Batterham. Secure and private cloud-based control using semi-homomorphic encryption. In Proceedings of 6th IFAC Workshop on Distributed Estimation and Control in Networked System, 2016.10.1016/j.conengprac.2017.07.004Search in Google Scholar
10. F. Farokhi, I. Shames and N. Batterham. Secure and private control using semi-homomorphic encryption. Control Engineering Practice, 67:13–20, 2017.10.1016/j.conengprac.2017.07.004Search in Google Scholar
11. C. Fontaine and F. Galand. A survey of homomorphic encryption for nonspecialists. EURASIP Journal on Information Security, 2007:013801, 2007.10.1186/1687-417X-2007-013801Search in Google Scholar
12. Bundesamt für Sicherheit in der Informationstechnik. Kryptographische Verfahren: Empfehlungen und Schlüssellängen. In Technische Richtlinie (BSI TR-02102-1), 2019.Search in Google Scholar
13. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univ., Dept. of Comp. Sci., 2009.10.1145/1536414.1536440Search in Google Scholar
14. J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition, CRC Press, 2014.10.1201/b17668Search in Google Scholar
15. J. Kim, C. Lee, H. Shim, J. H. Cheon, A. Kim, M. Kim and Y. Song. Encrypting controller using fully homomorphic encryption for security of cyber-physical systems. In Proc. of the 6th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pages 175–180, 2016.Search in Google Scholar
16. K. Kogiso and T. Fujita. Cyber-security enhancement of networked control systems using homomorphic encryption. In Proc. of the 54th Conference on Decision and Control, pages 6836–6843, 2015.10.1109/CDC.2015.7403296Search in Google Scholar
17. I. Kolmanovsky and E. G. Gilbert. Theory and computation of disturbance invariance sets for discrete-time linear systems. Mathematical Problems in Engineering, 4:317–367, 1998.10.1155/S1024123X98000866Search in Google Scholar
18. V. M. Kuntsevich and B. N. Pshenichnyi. Minimal invariant sets of dynamic systems with bounded disturbances. Cybernetics and Systems Analysis, 32(1):58–64, 1996.10.1007/BF02366582Search in Google Scholar
19. D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert. Constrained model predictive control: Stability and optimality. Automatica, 36:789–814, 2000.10.1016/S0005-1098(99)00214-9Search in Google Scholar
20. D. Q. Mayne, M. M. Seron and S. V. Raković. Robust model predictive control of constrained linear systems with bounded disturbances. Automatica, 41:219–224, 2005.10.1016/j.automatica.2004.08.019Search in Google Scholar
21. Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140(1):125–161, 2013.10.1007/s10107-012-0629-5Search in Google Scholar
22. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances in Cryptology – Eurocrypt ’99, volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer, 1999.10.1007/3-540-48910-X_16Search in Google Scholar
23. J. B. Rawlings, D. Q. Mayne and M. M. Diehl. Model Predictive Control: Theory, Computation, and Design, 2nd edition, Nob Hill Publishing, 2017.Search in Google Scholar
24. S. Richter, C. N. Jones and M. Morari. Real-time input-constrained MPC using fast gradient methods. In Proc. of the 48th IEEE Conference on Decision and Control, pages 7387–7392, 2009.10.1109/CDC.2009.5400619Search in Google Scholar
25. M. Schulze Darup, A. Redder and D. E. Quevedo. Encrypted cloud-based MPC for linear systems with input constraints. In Proc. of 6th IFAC Nonlinear Model Predictive Control Conference, 2018.10.1016/j.ifacol.2018.11.035Search in Google Scholar
26. M. Schulze Darup, A. Redder and D. E. Quevedo. Encrypted cooperative control based on structured feedback. IEEE Control Systems Letters, 3(1):37–42, 2019.10.1109/LCSYS.2018.2851152Search in Google Scholar
27. M. Schulze Darup, A. Redder, I. Shames, F. Farokhi and D. Quevedo. Towards encrypted MPC for linear constrained systems. IEEE Control Systems Letters, 2(2):195–200, 2018.10.1109/LCSYS.2017.2779473Search in Google Scholar
28. M. Schulze Darup, R. M. Schaich and M. Cannon. How scaling of the disturbance set affects robust positively invariant sets for linear systems. Int. J. Robust Nonlinear Control, 27:3236–3258, 2017.10.1002/rnc.3737Search in Google Scholar
29. A. Shamir. How to share a secret. Communications of the ACM, 53(3):97–105, 1979.10.1145/359168.359176Search in Google Scholar
30. P. Tøndel, T. A. Johansen and A. Bemporad. Computation and approximation of piecewise affine control laws via binary search trees. In Proc. of the 41st Conference on Decision and Control, pages 3144–3149, 2002.Search in Google Scholar
31. M. van Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan. Fully homomorphic encryption over the integers. In Proc. of the Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 24–43, 2010.10.1007/978-3-642-13190-5_2Search in Google Scholar
32. R. van Parys and G. Pipeleers. Real-time proximal gradient method for linear MPC. In Proc. of the 2018 European Control Conference, pages 1142–1147, 2018.10.23919/ECC.2018.8550118Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston